Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrS7G..
/
59356..
PUfeP..
/
4049c..
vout
PrS7G..
/
89e51..
0.02 bars
TMU85..
/
504f3..
ownership of
079d2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEnz..
/
8c0a1..
ownership of
e265a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS4R..
/
cdcb0..
ownership of
1a4bb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbUz..
/
c6831..
ownership of
d6983..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUQ6P..
/
45ea0..
doc published by
PrGxv..
Param
62ee1..
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
3b429..
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
True
:
ο
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Param
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
6e27d..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
∀ x7 : ο .
(
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x6
x8
x9
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x8
=
x6
x10
x11
⟶
x9
(
x6
x10
x11
)
)
⟶
x9
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
x8
x9
=
x6
x11
x12
)
)
)
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
=
x9
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
x8
=
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x6
x8
x1
)
(
1216a..
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
(
λ x9 .
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
x1
=
x9
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
=
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
=
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
⟶
x8
=
x9
)
⟶
prim1
(
x6
x1
x1
)
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
prim1
(
x6
x2
x1
)
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
x6
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
=
x6
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
(
x3
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
(
x3
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
=
x6
x11
x12
)
)
)
=
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
(
x3
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
(
x3
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
=
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
=
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
)
=
x6
x11
x12
)
)
)
=
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
=
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
⟶
x7
)
⟶
x7
Theorem
1a4bb..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
∀ x7 : ο .
(
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x6
x8
x9
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x6
x8
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
x9
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x9 .
∀ x10 : ο .
(
prim1
x9
x0
⟶
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x9
x11
)
)
⟶
x10
)
⟶
x10
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x9 .
∀ x10 : ο .
(
prim1
x9
x0
⟶
x8
=
x6
(
prim0
(
λ x12 .
∀ x13 : ο .
(
prim1
x12
x0
⟶
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x12
x14
)
)
⟶
x13
)
⟶
x13
)
)
x9
⟶
x10
)
⟶
x10
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
=
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
⟶
x8
=
x9
)
⟶
prim1
(
x6
x1
x1
)
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
prim1
(
x6
x2
x1
)
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x6
(
x3
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x10
x12
)
)
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x10
x12
)
)
⟶
x11
)
⟶
x11
)
)
)
(
x3
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
x8
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
prim1
x13
x0
⟶
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
x13
x15
)
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
x9
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
prim1
x13
x0
⟶
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
x13
x15
)
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
)
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x6
(
x3
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x16
x18
)
)
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x16
x18
)
)
⟶
x17
)
⟶
x17
)
)
)
(
x3
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
x8
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x8
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
x9
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x9
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
)
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
=
x3
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x6
(
x3
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
)
(
x3
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
x8
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
prim1
x17
x0
⟶
(
∃ x19 .
and
(
prim1
x19
x0
)
(
x8
=
x6
x17
x19
)
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
x9
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
prim1
x17
x0
⟶
(
∃ x19 .
and
(
prim1
x19
x0
)
(
x9
=
x6
x17
x19
)
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
)
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
(
x3
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x8
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x9
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
)
(
x3
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
x8
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
prim1
x22
x0
⟶
(
∃ x24 .
and
(
prim1
x24
x0
)
(
x8
=
x6
x22
x24
)
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
x9
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
prim1
x22
x0
⟶
(
∃ x24 .
and
(
prim1
x24
x0
)
(
x9
=
x6
x22
x24
)
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
)
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
x3
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x6
(
x3
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x10
x12
)
)
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x10
x12
)
)
⟶
x11
)
⟶
x11
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
x8
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
prim1
x13
x0
⟶
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
x13
x15
)
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
x9
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
prim1
x13
x0
⟶
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
x13
x15
)
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x10
x12
)
)
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
x9
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
prim1
x13
x0
⟶
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
x13
x15
)
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
)
(
x4
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
x8
=
x6
(
prim0
(
λ x13 .
∀ x14 : ο .
(
prim1
x13
x0
⟶
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
x13
x15
)
)
⟶
x14
)
⟶
x14
)
)
x10
⟶
x11
)
⟶
x11
)
)
(
prim0
(
λ x10 .
∀ x11 : ο .
(
prim1
x10
x0
⟶
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x10
x12
)
)
⟶
x11
)
⟶
x11
)
)
)
)
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x16
x18
)
)
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x16
x18
)
)
⟶
x17
)
⟶
x17
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
x8
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x8
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
x9
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x9
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x16
x18
)
)
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
x9
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x9
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
)
(
x4
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
x8
=
x6
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x8
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
x16
⟶
x17
)
⟶
x17
)
)
(
prim0
(
λ x16 .
∀ x17 : ο .
(
prim1
x16
x0
⟶
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x16
x18
)
)
⟶
x17
)
⟶
x17
)
)
)
)
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
=
x3
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
x8
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
prim1
x17
x0
⟶
(
∃ x19 .
and
(
prim1
x19
x0
)
(
x8
=
x6
x17
x19
)
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
x9
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
prim1
x17
x0
⟶
(
∃ x19 .
and
(
prim1
x19
x0
)
(
x9
=
x6
x17
x19
)
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
x9
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
prim1
x17
x0
⟶
(
∃ x19 .
and
(
prim1
x19
x0
)
(
x9
=
x6
x17
x19
)
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
)
(
x4
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
x8
=
x6
(
prim0
(
λ x17 .
∀ x18 : ο .
(
prim1
x17
x0
⟶
(
∃ x19 .
and
(
prim1
x19
x0
)
(
x8
=
x6
x17
x19
)
)
⟶
x18
)
⟶
x18
)
)
x14
⟶
x15
)
⟶
x15
)
)
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
)
)
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x8
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x9
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
x8
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
prim1
x22
x0
⟶
(
∃ x24 .
and
(
prim1
x24
x0
)
(
x8
=
x6
x22
x24
)
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
x9
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
prim1
x22
x0
⟶
(
∃ x24 .
and
(
prim1
x24
x0
)
(
x9
=
x6
x22
x24
)
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x8
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
x9
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
prim1
x22
x0
⟶
(
∃ x24 .
and
(
prim1
x24
x0
)
(
x9
=
x6
x22
x24
)
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
)
(
x4
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
x8
=
x6
(
prim0
(
λ x22 .
∀ x23 : ο .
(
prim1
x22
x0
⟶
(
∃ x24 .
and
(
prim1
x24
x0
)
(
x8
=
x6
x22
x24
)
)
⟶
x23
)
⟶
x23
)
)
x19
⟶
x20
)
⟶
x20
)
)
(
prim0
(
λ x19 .
∀ x20 : ο .
(
prim1
x19
x0
⟶
(
∃ x21 .
and
(
prim1
x21
x0
)
(
x9
=
x6
x19
x21
)
)
⟶
x20
)
⟶
x20
)
)
)
)
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
=
x3
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x9
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
)
(
x4
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
x8
=
x6
(
prim0
(
λ x14 .
∀ x15 : ο .
(
prim1
x14
x0
⟶
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x14
x16
)
)
⟶
x15
)
⟶
x15
)
)
x11
⟶
x12
)
⟶
x12
)
)
(
prim0
(
λ x11 .
∀ x12 : ο .
(
prim1
x11
x0
⟶
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x11
x13
)
)
⟶
x12
)
⟶
x12
)
)
)
)
⟶
x7
)
⟶
x7
...
Param
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
11fac..
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
Subq
:
ι
→
ι
→
ο
Known
424a2..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
explicit_Field
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
)
)
⟶
and
(
11fac..
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
λ x7 .
x6
(
prim0
(
λ x8 .
and
(
prim1
x8
x0
)
(
∃ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
x8
x9
)
)
)
)
x1
)
(
λ x7 .
x6
(
prim0
(
λ x8 .
and
(
prim1
x8
x0
)
(
x7
=
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
x8
)
)
)
x1
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
x6
x1
x2
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
)
)
)
(
(
∀ x7 .
prim1
x7
x0
⟶
x6
x7
x1
=
x7
)
⟶
and
(
and
(
and
(
and
(
and
(
Subq
x0
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
)
(
∀ x7 .
prim1
x7
x0
⟶
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
=
x7
)
)
(
x6
x1
x1
=
x1
)
)
(
x6
x2
x1
=
x2
)
)
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
=
x3
x7
x8
)
)
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
)
=
x4
x7
x8
)
)
Theorem
079d2..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
explicit_Field
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
)
)
⟶
∀ x7 : ο .
(
11fac..
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
x1
)
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
x1
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
x6
x1
x2
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
⟶
(
(
∀ x8 .
prim1
x8
x0
⟶
x6
x8
x1
=
x8
)
⟶
∀ x8 : ο .
(
(
∀ x9 : ο .
(
(
∀ x10 : ο .
(
(
∀ x11 : ο .
(
(
∀ x12 : ο .
(
Subq
x0
(
3b429..
x0
(
λ x13 .
x0
)
(
λ x13 x14 .
True
)
x6
)
⟶
(
∀ x13 .
prim1
x13
x0
⟶
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x13
=
x6
x15
x16
)
)
)
=
x13
)
⟶
x12
)
⟶
x12
)
⟶
x6
x1
x1
=
x1
⟶
x11
)
⟶
x11
)
⟶
x6
x2
x1
=
x2
⟶
x10
)
⟶
x10
)
⟶
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x10
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x11
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x10
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x10
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x3
x10
x11
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x10
=
x6
x12
x13
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
x14
x15
)
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x10
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x10
=
x6
x14
x15
)
)
)
)
x12
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x10
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x10
=
x6
x14
x15
)
)
)
)
x12
)
)
)
)
(
x4
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
(
prim0
(
λ x14 .
and
(
prim1
x14
x0
)
(
∃ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
x14
x15
)
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x10
=
x6
x12
x13
)
)
)
)
)
)
=
x4
x9
x10
)
⟶
x8
)
⟶
x8
)
⟶
x7
)
⟶
x7
...