Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
f5efd..
PUKKE..
/
7e24a..
vout
PrCit..
/
01659..
4.78 bars
TMNqn..
/
dfcd7..
ownership of
8aad1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMF8j..
/
7e0d9..
ownership of
d90d6..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLiE..
/
709eb..
ownership of
657ad..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcWQ..
/
096f8..
ownership of
fafba..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJyF..
/
22d56..
ownership of
0156c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLER..
/
23e14..
ownership of
e3d79..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMasG..
/
33ca8..
ownership of
b0421..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSqo..
/
8c08f..
ownership of
64283..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMH1B..
/
61dbd..
ownership of
3e701..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdLn..
/
ec844..
ownership of
0d2b7..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLxY..
/
ce047..
ownership of
38089..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJjv..
/
04e72..
ownership of
4e0cf..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMThj..
/
9f54f..
ownership of
51eee..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHFG..
/
b7061..
ownership of
75938..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVUS..
/
92ad8..
ownership of
f4190..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMaGL..
/
c2674..
ownership of
d631a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJ1z..
/
128e1..
ownership of
b3e89..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZQi..
/
9ee77..
ownership of
59798..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZCf..
/
e88a5..
ownership of
c558f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMaC..
/
1b930..
ownership of
8805a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZH9..
/
84ecc..
ownership of
7fdc4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVYT..
/
2ba8f..
ownership of
b88df..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMN1N..
/
071a9..
ownership of
696b5..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TML5r..
/
68b56..
ownership of
eabd7..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcjo..
/
db121..
ownership of
e3b9a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHCE..
/
915c4..
ownership of
ee497..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUfp..
/
5fdb7..
ownership of
43958..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLET..
/
24f55..
ownership of
a4a21..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHkd..
/
d26b0..
ownership of
2d848..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNAt..
/
97773..
ownership of
45103..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUes..
/
9a360..
ownership of
88aea..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHwu..
/
dad6a..
ownership of
d80fc..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMX1j..
/
e5922..
ownership of
df755..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPWG..
/
35a56..
ownership of
a69ec..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZKM..
/
8e570..
ownership of
94e7b..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMBu..
/
d272e..
ownership of
a885d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMYkm..
/
a75fa..
ownership of
fe118..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcoA..
/
a63e7..
ownership of
36e2b..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKvk..
/
5ede9..
ownership of
9475f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLXs..
/
6664c..
ownership of
35637..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcLa..
/
f68c3..
ownership of
44082..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMduZ..
/
8bda7..
ownership of
d522a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMX6U..
/
71360..
ownership of
1b5d7..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGfT..
/
c0a42..
ownership of
112e6..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSbZ..
/
bd0d6..
ownership of
651a3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMX2w..
/
51be4..
ownership of
26e35..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJB5..
/
97206..
ownership of
ea770..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMS8U..
/
df867..
ownership of
ab908..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMaj4..
/
ccdc4..
ownership of
600ec..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMaum..
/
3d58d..
ownership of
14d99..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTfV..
/
3bfcb..
ownership of
9697f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWYz..
/
b7474..
ownership of
d5a2b..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMN7L..
/
59f26..
ownership of
2fe98..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMF4y..
/
ff160..
ownership of
9b05c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGEi..
/
106b9..
ownership of
6cbbc..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJNr..
/
75219..
ownership of
4c9ce..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTZj..
/
5615f..
ownership of
26088..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNVn..
/
4c7b0..
ownership of
ec4e2..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWZj..
/
3d33b..
ownership of
8ebd9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNqu..
/
41340..
ownership of
d2589..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLvK..
/
82878..
ownership of
3f3e8..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSwP..
/
9363a..
ownership of
026a0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMH1R..
/
47e39..
ownership of
6143a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMG8T..
/
e5f71..
ownership of
605d2..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLST..
/
d2dc4..
ownership of
c9ec0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGpv..
/
bbac5..
ownership of
bce29..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTWx..
/
6606d..
ownership of
181b3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdoD..
/
98017..
ownership of
d01b6..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMag3..
/
47a2b..
ownership of
cc191..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQR3..
/
f1b82..
ownership of
37836..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWa7..
/
a6581..
ownership of
d8272..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMbnw..
/
03176..
ownership of
56452..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPXM..
/
7458c..
ownership of
b253c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGLx..
/
5732c..
ownership of
7b54c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWmr..
/
8253a..
ownership of
14338..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPA7..
/
8fafc..
ownership of
e4760..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLtj..
/
4547c..
ownership of
e588e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdJf..
/
16b2d..
ownership of
4d113..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMR3h..
/
3ca64..
ownership of
69a9c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMS8s..
/
2dff4..
ownership of
a83b0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNgK..
/
782a1..
ownership of
f4e2f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMScT..
/
25ff2..
ownership of
ca666..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGuh..
/
5757d..
ownership of
535ce..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJhf..
/
a6f47..
ownership of
91640..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcUZ..
/
2f320..
ownership of
6be8c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWwo..
/
2c7ea..
ownership of
2f981..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUUie..
/
38ffe..
doc published by
Pr4zB..
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Theorem
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
(proof)
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Theorem
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
(proof)
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
(proof)
Theorem
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
14338..
:
∀ x0 x1 x2 x3 .
x2
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
d8272..
:
∀ x0 x1 x2 x3 x4 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
cc191..
:
∀ x0 x1 x2 x3 x4 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
181b3..
:
∀ x0 x1 x2 x3 x4 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
c9ec0..
:
∀ x0 x1 x2 x3 x4 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
6143a..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
3f3e8..
:
∀ x0 x1 x2 x3 x4 x5 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
8ebd9..
:
∀ x0 x1 x2 x3 x4 x5 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
26088..
:
∀ x0 x1 x2 x3 x4 x5 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
6cbbc..
:
∀ x0 x1 x2 x3 x4 x5 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
2fe98..
:
∀ x0 x1 x2 x3 x4 x5 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
9697f..
:
∀ x0 x1 x2 x3 x4 x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
600ec..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
ea770..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
651a3..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
1b5d7..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
44082..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
9475f..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
fe118..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x6
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
94e7b..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
df755..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
88aea..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
2d848..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
43958..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
e3b9a..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
696b5..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x6
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
7fdc4..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x7
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
385ef..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
c558f..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Known
cbaf1..
:
∀ x0 x1 .
UPair
x0
x1
=
binunion
(
Sing
x0
)
(
Sing
x1
)
Known
setsum_1_1_2
setsum_1_1_2
:
setsum
1
1
=
2
Known
4f2c3..
:
∀ x0 .
atleastp
(
Sing
x0
)
u1
Theorem
b3e89..
:
∀ x0 x1 .
atleastp
(
UPair
x0
x1
)
u2
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
f4190..
:
∀ x0 .
add_nat
x0
u1
=
ordsucc
x0
(proof)
Definition
u3
:=
ordsucc
u2
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_2
nat_2
:
nat_p
2
Known
nat_1
nat_1
:
nat_p
1
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Theorem
51eee..
:
∀ x0 x1 x2 .
atleastp
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
u3
(proof)
Definition
u4
:=
ordsucc
u3
Known
nat_3
nat_3
:
nat_p
3
Theorem
38089..
:
∀ x0 x1 x2 x3 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
u4
(proof)
Definition
u5
:=
ordsucc
u4
Known
nat_4
nat_4
:
nat_p
4
Theorem
3e701..
:
∀ x0 x1 x2 x3 x4 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
u5
(proof)
Definition
u6
:=
ordsucc
u5
Known
nat_5
nat_5
:
nat_p
5
Theorem
b0421..
:
∀ x0 x1 x2 x3 x4 x5 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
u6
(proof)
Definition
u7
:=
ordsucc
u6
Known
nat_6
nat_6
:
nat_p
6
Theorem
0156c..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
u7
(proof)
Definition
u8
:=
ordsucc
u7
Known
nat_7
nat_7
:
nat_p
7
Theorem
657ad..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
u8
(proof)
Param
and
and
:
ο
→
ο
→
ο
Definition
TwoRamseyProp
TwoRamseyProp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Definition
u9
:=
ordsucc
u8
Known
bd9af..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
∀ x6 .
x6
∈
u9
⟶
(
x1
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x1
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x1
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
x0
x1
x5
⟶
not
(
x0
x3
x4
)
⟶
not
(
x0
x3
x5
)
⟶
not
(
x0
x4
x5
)
⟶
(
∀ x7 .
x7
∈
u9
⟶
x0
x1
x7
⟶
x7
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x3
)
x4
)
x5
)
⟶
x0
x6
x3
⟶
x0
x6
x4
⟶
x2
)
⟶
x2
Known
8455a..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x5
⟶
not
(
x0
x2
x5
)
⟶
not
(
x0
x3
x5
)
⟶
(
∀ x6 .
x6
∈
u9
⟶
x0
x1
x6
⟶
x6
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x5
)
⟶
x4
)
⟶
x4
Known
1aece..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
∀ x5 :
ι → ο
.
x5
x0
⟶
x5
x1
⟶
x5
x2
⟶
x5
x3
⟶
x5
x4
Known
c62d8..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
(
x1
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
∀ x5 .
x5
∈
u9
⟶
x0
x1
x5
⟶
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
0799b..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x0
x5
x2
⟶
x0
x5
x3
⟶
x0
x5
x4
⟶
False
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_8
nat_8
:
nat_p
8
Known
a515c..
:
∀ x0 x1 x2 .
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
equip
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
u3
Known
In_0_9
In_0_9
:
0
∈
9
Known
0728d..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
∀ x5 : ο .
(
x1
=
x2
⟶
x5
)
⟶
(
x1
=
x3
⟶
x5
)
⟶
(
x1
=
x4
⟶
x5
)
⟶
(
x2
=
x3
⟶
x5
)
⟶
(
x2
=
x4
⟶
x5
)
⟶
(
x3
=
x4
⟶
x5
)
⟶
x5
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
TwoRamseyProp_3_4_9
TwoRamseyProp_3_4_9
:
TwoRamseyProp
3
4
9
(proof)