Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../f5efd..
PUKKE../7e24a..
vout
PrCit../01659.. 4.78 bars
TMNqn../dfcd7.. ownership of 8aad1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMF8j../7e0d9.. ownership of d90d6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLiE../709eb.. ownership of 657ad.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcWQ../096f8.. ownership of fafba.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJyF../22d56.. ownership of 0156c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLER../23e14.. ownership of e3d79.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMasG../33ca8.. ownership of b0421.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSqo../8c08f.. ownership of 64283.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMH1B../61dbd.. ownership of 3e701.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdLn../ec844.. ownership of 0d2b7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLxY../ce047.. ownership of 38089.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJjv../04e72.. ownership of 4e0cf.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMThj../9f54f.. ownership of 51eee.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHFG../b7061.. ownership of 75938.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVUS../92ad8.. ownership of f4190.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaGL../c2674.. ownership of d631a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJ1z../128e1.. ownership of b3e89.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZQi../9ee77.. ownership of 59798.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZCf../e88a5.. ownership of c558f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMaC../1b930.. ownership of 8805a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZH9../84ecc.. ownership of 7fdc4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVYT../2ba8f.. ownership of b88df.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMN1N../071a9.. ownership of 696b5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TML5r../68b56.. ownership of eabd7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcjo../db121.. ownership of e3b9a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHCE../915c4.. ownership of ee497.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUfp../5fdb7.. ownership of 43958.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLET../24f55.. ownership of a4a21.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHkd../d26b0.. ownership of 2d848.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNAt../97773.. ownership of 45103.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUes../9a360.. ownership of 88aea.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHwu../dad6a.. ownership of d80fc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMX1j../e5922.. ownership of df755.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPWG../35a56.. ownership of a69ec.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZKM../8e570.. ownership of 94e7b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMBu../d272e.. ownership of a885d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMYkm../a75fa.. ownership of fe118.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcoA../a63e7.. ownership of 36e2b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKvk../5ede9.. ownership of 9475f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLXs../6664c.. ownership of 35637.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcLa../f68c3.. ownership of 44082.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMduZ../8bda7.. ownership of d522a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMX6U../71360.. ownership of 1b5d7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGfT../c0a42.. ownership of 112e6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSbZ../bd0d6.. ownership of 651a3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMX2w../51be4.. ownership of 26e35.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJB5../97206.. ownership of ea770.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMS8U../df867.. ownership of ab908.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaj4../ccdc4.. ownership of 600ec.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaum../3d58d.. ownership of 14d99.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTfV../3bfcb.. ownership of 9697f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWYz../b7474.. ownership of d5a2b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMN7L../59f26.. ownership of 2fe98.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMF4y../ff160.. ownership of 9b05c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGEi../106b9.. ownership of 6cbbc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJNr../75219.. ownership of 4c9ce.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTZj../5615f.. ownership of 26088.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNVn../4c7b0.. ownership of ec4e2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWZj../3d33b.. ownership of 8ebd9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNqu../41340.. ownership of d2589.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLvK../82878.. ownership of 3f3e8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSwP../9363a.. ownership of 026a0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMH1R../47e39.. ownership of 6143a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMG8T../e5f71.. ownership of 605d2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLST../d2dc4.. ownership of c9ec0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGpv../bbac5.. ownership of bce29.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTWx../6606d.. ownership of 181b3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdoD../98017.. ownership of d01b6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMag3../47a2b.. ownership of cc191.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQR3../f1b82.. ownership of 37836.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWa7../a6581.. ownership of d8272.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbnw../03176.. ownership of 56452.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPXM../7458c.. ownership of b253c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGLx../5732c.. ownership of 7b54c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWmr../8253a.. ownership of 14338.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPA7../8fafc.. ownership of e4760.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLtj../4547c.. ownership of e588e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdJf../16b2d.. ownership of 4d113.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMR3h../3ca64.. ownership of 69a9c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMS8s../2dff4.. ownership of a83b0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNgK../782a1.. ownership of f4e2f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMScT../25ff2.. ownership of ca666.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGuh../5757d.. ownership of 535ce.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJhf../a6f47.. ownership of 91640.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcUZ../2f320.. ownership of 6be8c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWwo../2c7ea.. ownership of 2f981.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUUie../38ffe.. doc published by Pr4zB..
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Param UPairUPair : ιιι
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Theorem 6be8c.. : ∀ x0 x1 x2 . x0SetAdjoin (UPair x0 x1) x2 (proof)
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Theorem 535ce.. : ∀ x0 x1 x2 . x1SetAdjoin (UPair x0 x1) x2 (proof)
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Theorem f4e2f.. : ∀ x0 x1 x2 . x2SetAdjoin (UPair x0 x1) x2 (proof)
Theorem 69a9c.. : ∀ x0 x1 x2 x3 . x0SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem e588e.. : ∀ x0 x1 x2 x3 . x1SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem 14338.. : ∀ x0 x1 x2 x3 . x2SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem b253c.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem d8272.. : ∀ x0 x1 x2 x3 x4 . x0SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem cc191.. : ∀ x0 x1 x2 x3 x4 . x1SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem 181b3.. : ∀ x0 x1 x2 x3 x4 . x2SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem c9ec0.. : ∀ x0 x1 x2 x3 x4 . x3SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem 6143a.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem 3f3e8.. : ∀ x0 x1 x2 x3 x4 x5 . x0SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 8ebd9.. : ∀ x0 x1 x2 x3 x4 x5 . x1SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 26088.. : ∀ x0 x1 x2 x3 x4 x5 . x2SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 6cbbc.. : ∀ x0 x1 x2 x3 x4 x5 . x3SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 2fe98.. : ∀ x0 x1 x2 x3 x4 x5 . x4SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 9697f.. : ∀ x0 x1 x2 x3 x4 x5 . x5SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 600ec.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x0SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem ea770.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x1SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 651a3.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x2SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 1b5d7.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x3SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 44082.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x4SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 9475f.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x5SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem fe118.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x6SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 94e7b.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x0SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem df755.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x1SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 88aea.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x2SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 2d848.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x3SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 43958.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x4SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem e3b9a.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x5SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 696b5.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x6SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 7fdc4.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x7SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Param atleastpatleastp : ιιο
Param setsumsetsum : ιιι
Param setminussetminus : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known FalseEFalseE : False∀ x0 : ο . x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Theorem c558f.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3atleastp (binunion x0 x1) (setsum x2 x3) (proof)
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Known cbaf1.. : ∀ x0 x1 . UPair x0 x1 = binunion (Sing x0) (Sing x1)
Known setsum_1_1_2setsum_1_1_2 : setsum 1 1 = 2
Known 4f2c3.. : ∀ x0 . atleastp (Sing x0) u1
Theorem b3e89.. : ∀ x0 x1 . atleastp (UPair x0 x1) u2 (proof)
Param add_natadd_nat : ιιι
Param nat_pnat_p : ιο
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem f4190.. : ∀ x0 . add_nat x0 u1 = ordsucc x0 (proof)
Definition u3 := ordsucc u2
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_2nat_2 : nat_p 2
Known nat_1nat_1 : nat_p 1
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Theorem 51eee.. : ∀ x0 x1 x2 . atleastp (SetAdjoin (UPair x0 x1) x2) u3 (proof)
Definition u4 := ordsucc u3
Known nat_3nat_3 : nat_p 3
Theorem 38089.. : ∀ x0 x1 x2 x3 . atleastp (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) u4 (proof)
Definition u5 := ordsucc u4
Known nat_4nat_4 : nat_p 4
Theorem 3e701.. : ∀ x0 x1 x2 x3 x4 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) u5 (proof)
Definition u6 := ordsucc u5
Known nat_5nat_5 : nat_p 5
Theorem b0421.. : ∀ x0 x1 x2 x3 x4 x5 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) u6 (proof)
Definition u7 := ordsucc u6
Known nat_6nat_6 : nat_p 6
Theorem 0156c.. : ∀ x0 x1 x2 x3 x4 x5 x6 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) u7 (proof)
Definition u8 := ordsucc u7
Known nat_7nat_7 : nat_p 7
Theorem 657ad.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7) u8 (proof)
Param andand : οοο
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Definition u9 := ordsucc u8
Known bd9af.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 : ο . (∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9∀ x6 . x6u9(x1 = x3∀ x7 : ο . x7)(x1 = x4∀ x7 : ο . x7)(x1 = x5∀ x7 : ο . x7)(x1 = x6∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)x0 x1 x3x0 x1 x4x0 x1 x5not (x0 x3 x4)not (x0 x3 x5)not (x0 x4 x5)(∀ x7 . x7u9x0 x1 x7x7SetAdjoin (SetAdjoin (UPair x1 x3) x4) x5)x0 x6 x3x0 x6 x4x2)x2
Known 8455a.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)x0 x1 x2x0 x1 x3∀ x4 : ο . (∀ x5 . x5u9(x1 = x5∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)x0 x1 x5not (x0 x2 x5)not (x0 x3 x5)(∀ x6 . x6u9x0 x1 x6x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x5)x4)x4
Known 1aece.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3∀ x5 : ι → ο . x5 x0x5 x1x5 x2x5 x3x5 x4
Known c62d8.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x0 x1 x2x0 x1 x3x0 x1 x4∀ x5 . x5u9x0 x1 x5x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known 0799b.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9(x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x2x0 x1 x3x0 x1 x4not (x0 x2 x3)not (x0 x2 x4)not (x0 x3 x4)x0 x5 x2x0 x5 x3x0 x5 x4False
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_8nat_8 : nat_p 8
Known a515c.. : ∀ x0 x1 x2 . (x0 = x1∀ x3 : ο . x3)(x0 = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)equip (SetAdjoin (UPair x0 x1) x2) u3
Known In_0_9In_0_9 : 09
Known 0728d.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1)∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9not (x0 x1 x2)not (x0 x1 x3)not (x0 x1 x4)not (x0 x2 x3)not (x0 x2 x4)not (x0 x3 x4)∀ x5 : ο . (x1 = x2x5)(x1 = x3x5)(x1 = x4x5)(x2 = x3x5)(x2 = x4x5)(x3 = x4x5)x5
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem TwoRamseyProp_3_4_9TwoRamseyProp_3_4_9 : TwoRamseyProp 3 4 9 (proof)