vout |
---|
PrBec../6498b.. 363.93 barsTMTXf../b9b72.. ownership of 2e12a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMaba../7f001.. ownership of 965ba.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTwc../1e4b1.. ownership of 2d68a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQ51../44882.. ownership of 93e4b.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTre../b2ad3.. ownership of c1f11.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMKZe../2adba.. ownership of 6261e.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTpJ../75717.. ownership of 7dbdd.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMKJx../61364.. ownership of 7573f.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTpE../262ef.. ownership of 79718.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQ5K../aa18c.. ownership of 10a45.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTKt../07450.. ownership of d1baf.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTWf../a5744.. ownership of 1b6af.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTbk../ca9df.. ownership of 89451.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMddL../65495.. ownership of 764fd.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTBb../56e93.. ownership of e7ac4.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMWUj../fcc3f.. ownership of 10de8.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMT6g../482af.. ownership of 78a98.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMUDK../faaba.. ownership of b5bfb.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMT59../12328.. ownership of 6cf9b.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMJYP../ea57b.. ownership of 42fdb.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMSD9../c85b1.. ownership of 143da.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMLXW../168b4.. ownership of 3f2c6.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMSt1../6d652.. ownership of 8f084.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMGwZ../2eba6.. ownership of 32b78.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMSmx../c9c95.. ownership of 002b7.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMXUh../5bc74.. ownership of 0d1f0.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMShM../d4c36.. ownership of 2212e.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMWfA../99812.. ownership of 3f145.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMSG7../8db95.. ownership of 526d3.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPJH../b5321.. ownership of 7d4ca.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMSdP../fb0b9.. ownership of e23c1.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMWZZ../9e29a.. ownership of fe0a9.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMS5X../00f63.. ownership of 5f591.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPBn../dfd16.. ownership of f6ee5.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMS1R../3eb25.. ownership of 0c048.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMdRG../b61e6.. ownership of 381ef.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMdVf../d2ede.. ownership of 8485f.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMKAs../1c6ee.. ownership of 9ed4c.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMRsm../5bd32.. ownership of 0a3a0.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMJbK../b4ae4.. ownership of 94934.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMRqo../3fb87.. ownership of 9718f.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMXcH../a3414.. ownership of 5f97b.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMRNf../e7d16.. ownership of a44be.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMa9A../31d08.. ownership of 8de5e.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMRMV../fb2dd.. ownership of d62b4.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMSYn../64c00.. ownership of 43b10.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMRM2../96fa8.. ownership of 0045e.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMYWe../ef3f8.. ownership of 9d0c5.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMREW../93c29.. ownership of c4ca7.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMMut../77d8a.. ownership of 3d181.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMR5G../3abc1.. ownership of 06556.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMaUf../1eb02.. ownership of 04702.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQzs../48a79.. ownership of 1335e.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMJUA../2fee9.. ownership of 025d1.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQyp../890a7.. ownership of 4089a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQeN../819f5.. ownership of 3ef1a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQw5../26dd2.. ownership of d1cee.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMJPR../9b131.. ownership of 1f9f5.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQMu../cd09d.. ownership of ca202.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMLXH../4c47a.. ownership of 252eb.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQkr../cf6b8.. ownership of 55ef0.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMUN4../e175a.. ownership of 9d715.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQHq../8b41b.. ownership of e05d4.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMbtL../6f22d.. ownership of bc1de.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQHQ../cb9c2.. ownership of 2badf.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTrg../5ae8a.. ownership of 035e8.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQFx../c088c.. ownership of 759ad.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMKYp../62257.. ownership of 996a7.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQaJ../e49d6.. ownership of b3cd9.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMRaW../148bf.. ownership of 6af68.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMQ9j../f0b35.. ownership of c4af8.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMLGz../dd073.. ownership of dd9b5.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMGbN../d49e1.. ownership of 04573.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMUVz../f85e0.. ownership of 6dbb8.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPYv../ee4fa.. ownership of 8a079.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMTPG../a8c14.. ownership of 9d9cd.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPVe../ff3b0.. ownership of 79b32.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMb8A../4f258.. ownership of df072.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPsk../9c9bf.. ownership of 50fbc.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMYgB../3b49c.. ownership of d4b09.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPq3../ba64e.. ownership of c4d88.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMNAg../a3f04.. ownership of 7e0e2.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPkY../f944c.. ownership of 45d74.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMaXb../fc7bf.. ownership of bf24b.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPKy../5bd72.. ownership of d7022.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMWxC../a599d.. ownership of d5870.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMchM../7f4cf.. ownership of e5aca.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMWbf../0d10f.. ownership of 54aaa.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMPc1../92833.. ownership of bdd76.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMGa7../4b474.. ownership of cc8da.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMNnb../ee874.. ownership of 6c0f2.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMKfC../3f88d.. ownership of aab2b.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMNMe../b8731.. ownership of 4d91c.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0TMHPB../6ab47.. ownership of 03d0a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0PUSnZ../ffe95.. doc published by PrGVS..Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known notEnotE : ∀ x0 : ο . not x0 ⟶ x0 ⟶ FalseKnown e3ec9..neq_0_1 : not (0 = 1)Theorem 4d91c.. : ∀ x0 : (((((ι → ι) → ι → ι) → ι) → ι → ι → ι) → ι → ι) → ((((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι) → ι → ι . ∀ x1 : (((ι → ι) → ι) → ι → ι) → (((ι → ι) → ι) → ((ι → ι) → ι) → ι) → (ι → ι) → ι . ∀ x2 : ((((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . ∀ x3 : (ι → ι) → ((ι → ι) → ι) → ι . (∀ x4 x5 x6 x7 . x3 (λ x9 . Inj1 0) (λ x9 : ι → ι . setsum (x0 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x11 . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . setsum x11 x7) (Inj0 (x0 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x11 . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0) 0))) 0) = setsum 0 (x3 (λ x9 . x5) (λ x9 : ι → ι . x5))) ⟶ (∀ x4 x5 x6 x7 . x3 (λ x9 . Inj1 (setsum (x2 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . setsum 0 0) 0 (λ x10 . x0 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x12 . 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . 0) 0) 0) 0)) (λ x9 : ι → ι . x9 (x2 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x0 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x12 . x12) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . x2 (λ x13 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x13 . 0) 0) x7) (setsum (x0 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x11 . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0) 0) 0) (λ x10 . x3 (λ x11 . 0) (λ x11 : ι → ι . x11 0)) (setsum x7 (x1 (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 x11 : (ι → ι) → ι . 0) (λ x10 . 0))))) = x6) ⟶ (∀ x4 x5 x6 . ∀ x7 : ((ι → ι) → (ι → ι) → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . x2 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x9 (λ x10 : ι → ι → ι . λ x11 : ι → ι . x11 (x7 (λ x12 x13 : ι → ι . 0) (λ x12 : ι → ι . λ x13 . Inj0 0) (λ x12 . Inj0 0))) (λ x10 . x2 (λ x11 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x7 (λ x12 x13 : ι → ι . x0 (λ x14 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x15 . 0) (λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x15 . 0) 0) (λ x12 : ι → ι . λ x13 . x10) (λ x12 . 0)) (x7 (λ x11 x12 : ι → ι . Inj1 0) (λ x11 : ι → ι . λ x12 . x0 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x14 . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x14 . 0) 0) (λ x11 . x2 (λ x12 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x12 . 0) 0)) (λ x11 . setsum x11 (Inj1 0)) (Inj1 0))) (x3 (λ x9 . Inj1 (x7 (λ x10 x11 : ι → ι . Inj1 0) (λ x10 : ι → ι . λ x11 . 0) (λ x10 . setsum 0 0))) (λ x9 : ι → ι . setsum (x3 (λ x10 . setsum 0 0) (λ x10 : ι → ι . 0)) (x9 (setsum 0 0)))) (λ x9 . Inj0 (x7 (λ x10 x11 : ι → ι . setsum x9 (setsum 0 0)) (λ x10 : ι → ι . λ x11 . 0) (λ x10 . x1 (λ x11 : (ι → ι) → ι . λ x12 . x2 (λ x13 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x13 . 0) 0) (λ x11 x12 : (ι → ι) → ι . x1 (λ x13 : (ι → ι) → ι . λ x14 . 0) (λ x13 x14 : (ι → ι) → ι . 0) (λ x13 . 0)) (λ x11 . x0 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x13 . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 . 0) 0)))) (x2 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x3 (λ x10 . x2 (λ x11 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x11 . Inj0 0) (setsum 0 0)) (λ x10 : ι → ι . Inj0 (x2 (λ x11 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x11 . 0) 0))) (setsum (x1 (λ x9 : (ι → ι) → ι . λ x10 . 0) (λ x9 x10 : (ι → ι) → ι . setsum 0 0) (λ x9 . x1 (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 x11 : (ι → ι) → ι . 0) (λ x10 . 0))) (x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . setsum 0 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . x0 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x12 . 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . 0) 0) 0)) (λ x9 . x6) (x2 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x1 (λ x10 : (ι → ι) → ι . λ x11 . setsum 0 0) (λ x10 x11 : (ι → ι) → ι . x0 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x13 . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 . 0) 0) (λ x10 . x9 (λ x11 : ι → ι → ι . λ x12 : ι → ι . 0) (λ x11 . 0))) (Inj1 (setsum 0 0)) (λ x9 . x1 (λ x10 : (ι → ι) → ι . λ x11 . x2 (λ x12 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x12 . 0) 0) (λ x10 x11 : (ι → ι) → ι . x3 (λ x12 . 0) (λ x12 : ι → ι . 0)) (λ x10 . 0)) (x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . setsum 0 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . 0) (Inj1 0)))) = x3 (λ x9 . x2 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x10 (λ x11 : ι → ι → ι . λ x12 : ι → ι . x3 (λ x13 . x13) (λ x13 : ι → ι . x1 (λ x14 : (ι → ι) → ι . λ x15 . 0) (λ x14 x15 : (ι → ι) → ι . 0) (λ x14 . 0))) (λ x11 . Inj1 (x7 (λ x12 x13 : ι → ι . 0) (λ x12 : ι → ι . λ x13 . 0) (λ x12 . 0)))) (x2 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x6) 0 (λ x10 . 0) (x1 (λ x10 : (ι → ι) → ι . λ x11 . x1 (λ x12 : (ι → ι) → ι . λ x13 . 0) (λ x12 x13 : (ι → ι) → ι . 0) (λ x12 . 0)) (λ x10 x11 : (ι → ι) → ι . 0) (λ x10 . x7 (λ x11 x12 : ι → ι . 0) (λ x11 : ι → ι . λ x12 . 0) (λ x11 . 0)))) (λ x10 . x1 (λ x11 : (ι → ι) → ι . λ x12 . x1 (λ x13 : (ι → ι) → ι . λ x14 . 0) (λ x13 x14 : (ι → ι) → ι . x13 (λ x15 . 0)) (λ x13 . x0 (λ x14 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x15 . 0) (λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x15 . 0) 0)) (λ x11 x12 : (ι → ι) → ι . x3 (λ x13 . x12 (λ x14 . 0)) (λ x13 : ι → ι . 0)) (λ x11 . x2 (λ x12 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . Inj0 0) (Inj0 0) (λ x12 . x3 (λ x13 . 0) (λ x13 : ι → ι . 0)) x9)) (x0 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x11 . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0) x6)) (λ x9 : ι → ι . Inj1 x5)) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x2 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x1 (λ x10 : (ι → ι) → ι . λ x11 . x10 (λ x12 . x10 (λ x13 . 0))) (λ x10 x11 : (ι → ι) → ι . Inj0 (x2 (λ x12 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x1 (λ x13 : (ι → ι) → ι . λ x14 . 0) (λ x13 x14 : (ι → ι) → ι . 0) (λ x13 . 0)) (x9 (λ x12 : ι → ι → ι . λ x13 : ι → ι . 0) (λ x12 . 0)) (λ x12 . Inj0 0) 0)) (λ x10 . 0)) (Inj1 (setsum 0 (x2 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x5) x5 (λ x9 . 0) (Inj0 0)))) (λ x9 . x0 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x11 . x7) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . x10 (λ x12 : ι → ι . λ x13 . x11) 0 (x0 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x13 . x1 (λ x14 : (ι → ι) → ι . λ x15 . 0) (λ x14 x15 : (ι → ι) → ι . 0) (λ x14 . 0)) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 . x10 (λ x14 : ι → ι . λ x15 . 0) 0 0) x7)) (setsum x5 0)) 0 = Inj0 (setsum (x3 (λ x9 . x3 (λ x10 . setsum 0 0) (λ x10 : ι → ι . setsum 0 0)) (λ x9 : ι → ι . setsum x7 (x9 0))) (x1 (λ x9 : (ι → ι) → ι . λ x10 . x1 (λ x11 : (ι → ι) → ι . λ x12 . setsum 0 0) (λ x11 x12 : (ι → ι) → ι . setsum 0 0) (λ x11 . Inj1 0)) (λ x9 x10 : (ι → ι) → ι . x10 (λ x11 . x11)) (λ x9 . setsum 0 (Inj1 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 x7 . x1 (λ x9 : (ι → ι) → ι . λ x10 . 0) (λ x9 x10 : (ι → ι) → ι . x3 (λ x11 . 0) (λ x11 : ι → ι . x2 (λ x12 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . x9 (λ x13 . 0)) 0 (λ x12 . x1 (λ x13 : (ι → ι) → ι . λ x14 . x14) (λ x13 x14 : (ι → ι) → ι . 0) (λ x13 . x10 (λ x14 . 0))) (x0 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x13 . x11 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 . x12 (λ x14 : ι → ι . λ x15 . 0) 0 0) (x1 (λ x12 : (ι → ι) → ι . λ x13 . 0) (λ x12 x13 : (ι → ι) → ι . 0) (λ x12 . 0))))) (λ x9 . setsum (setsum (x5 (x1 (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 x11 : (ι → ι) → ι . 0) (λ x10 . 0)) (setsum 0 0) 0 (x2 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x10 . 0) 0)) 0) x6) = Inj0 (Inj0 (x3 (λ x9 . x7) (λ x9 : ι → ι . 0)))) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 : (ι → ι) → ι . λ x10 . 0) (λ x9 x10 : (ι → ι) → ι . 0) (λ x9 . x2 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) (x3 (λ x10 . 0) (λ x10 : ι → ι . 0)) (λ x10 . setsum (Inj0 (Inj1 0)) (Inj0 (x2 (λ x11 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x11 . 0) 0))) (Inj0 0)) = setsum (x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . Inj0 (x0 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x12 . Inj0 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . 0) 0)) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . x3 (λ x11 . Inj1 0) (λ x11 : ι → ι . 0)) (setsum (x5 (λ x9 . setsum 0 0)) 0)) (x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . x1 (λ x11 : (ι → ι) → ι . λ x12 . x1 (λ x13 : (ι → ι) → ι . λ x14 . x12) (λ x13 x14 : (ι → ι) → ι . x0 (λ x15 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x16 . 0) (λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x16 . 0) 0) (λ x13 . Inj1 0)) (λ x11 x12 : (ι → ι) → ι . 0) (λ x11 . x0 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x13 . Inj1 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 . 0) x10)) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . Inj0) (x3 (λ x9 . setsum (x5 (λ x10 . 0)) (x6 0)) (λ x9 : ι → ι . x9 (setsum 0 0))))) ⟶ (∀ x4 : ι → ι → ι → ι . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . Inj0 (Inj0 (x0 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x12 . x12) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . x0 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x14 . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x14 . 0) 0) 0))) (setsum (x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . x6) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . Inj1 0) (setsum (x2 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . 0) 0 (λ x9 . 0) 0) 0)) (setsum (Inj0 (x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . 0) 0)) 0)) = Inj1 (x3 (λ x9 . 0) (λ x9 : ι → ι . 0))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x0 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x10 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . x10) 0 = setsum (x3 (λ x9 . x7) (λ x9 : ι → ι . Inj1 0)) (x1 (λ x9 : (ι → ι) → ι . setsum 0) (λ x9 x10 : (ι → ι) → ι . x6 (x9 (λ x11 . x1 (λ x12 : (ι → ι) → ι . λ x13 . 0) (λ x12 x13 : (ι → ι) → ι . 0) (λ x12 . 0)))) (λ x9 . x0 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . λ x11 . setsum (setsum 0 0) (x1 (λ x12 : (ι → ι) → ι . λ x13 . 0) (λ x12 x13 : (ι → ι) → ι . 0) (λ x12 . 0))) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0) 0))) ⟶ False (proof)Theorem 6c0f2.. : ∀ x0 : ((ι → ((ι → ι) → ι → ι) → (ι → ι) → ι) → (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι) → ((((ι → ι) → ι) → ι → ι) → ι) → (((ι → ι) → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . ∀ x1 : (ι → ι → ι → ι) → ι → ι . ∀ x2 : (ι → ι) → ι → (((ι → ι) → ι) → (ι → ι) → ι) → ι → ι → ι → ι . ∀ x3 : (((ι → ι) → ((ι → ι) → ι) → ι) → ι) → ((ι → ι) → ι) → ι . (∀ x4 : ι → (ι → ι) → ι → ι → ι . ∀ x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 . x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x9 : ι → ι . setsum (x1 (λ x10 x11 x12 . x9 (x2 (λ x13 . 0) 0 (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . 0) 0 0 0)) (Inj1 0)) (setsum 0 (x9 (setsum 0 0)))) = x7) ⟶ (∀ x4 : ι → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι) → ι → ι . ∀ x6 : ((ι → ι) → ι → ι → ι) → ((ι → ι) → ι) → ι → ι . ∀ x7 : ι → ι . x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . x9 (λ x10 . 0) (λ x10 : ι → ι . setsum (x9 (λ x11 . Inj1 0) (λ x11 : ι → ι . x1 (λ x12 x13 x14 . 0) 0)) (x9 (λ x11 . 0) (λ x11 : ι → ι . 0)))) (λ x9 : ι → ι . 0) = x6 (λ x9 : ι → ι . λ x10 x11 . x7 0) (λ x9 : ι → ι . x1 (λ x10 x11 x12 . 0) 0) (x2 (λ x9 . setsum 0 (Inj1 (x2 (λ x10 . 0) 0 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . 0) 0 0 0))) (x1 (λ x9 x10 x11 . x11) 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x10 (Inj1 (setsum 0 0))) (x1 (λ x9 x10 x11 . setsum (x0 (λ x12 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x12 : ((ι → ι) → ι) → ι → ι . 0) (λ x12 : (ι → ι) → ι . λ x13 . 0) (λ x12 : ι → ι . λ x13 . 0)) (setsum 0 0)) (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . setsum 0 0) (λ x9 : ((ι → ι) → ι) → ι → ι . setsum 0 0) (λ x9 : (ι → ι) → ι . λ x10 . x7 0) (λ x9 : ι → ι . λ x10 . x2 (λ x11 . 0) 0 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . 0) 0 0 0))) (Inj0 (setsum (x7 0) (x2 (λ x9 . 0) 0 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) 0 0 0))) 0)) ⟶ (∀ x4 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι → ι . ∀ x5 . ∀ x6 : ((ι → ι → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x7 : ((ι → ι) → (ι → ι) → ι → ι) → (ι → ι → ι) → ι . x2 (λ x9 . Inj1 (x0 (λ x10 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x10 : ((ι → ι) → ι) → ι → ι . x10 (λ x11 : ι → ι . x1 (λ x12 x13 x14 . 0) 0) 0) (λ x10 : (ι → ι) → ι . λ x11 . x10 (λ x12 . x12)) (λ x10 : ι → ι . λ x11 . x7 (λ x12 x13 : ι → ι . λ x14 . x13 0) (λ x12 x13 . x12)))) (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x9 : ι → ι . x1 (λ x10 x11 x12 . x10) (Inj1 (x0 (λ x10 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x10 : ((ι → ι) → ι) → ι → ι . 0) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . 0))))) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x3 (λ x11 : (ι → ι) → ((ι → ι) → ι) → ι . x3 (λ x12 : (ι → ι) → ((ι → ι) → ι) → ι . x10 (x11 (λ x13 . 0) (λ x13 : ι → ι . 0))) (λ x12 : ι → ι . Inj0 (setsum 0 0))) (λ x11 : ι → ι . x10 (Inj1 0))) 0 (x7 (λ x9 x10 : ι → ι . λ x11 . x1 (λ x12 x13 x14 . setsum (Inj0 0) 0) (setsum 0 0)) (λ x9 x10 . 0)) (setsum (Inj1 (x2 (λ x9 . x5) (setsum 0 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) (Inj1 0) 0 x5)) (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . setsum (setsum 0 0) (Inj0 0)) (λ x9 : ((ι → ι) → ι) → ι → ι . x7 (λ x10 x11 : ι → ι . λ x12 . x0 (λ x13 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x14 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x13 : ((ι → ι) → ι) → ι → ι . 0) (λ x13 : (ι → ι) → ι . λ x14 . 0) (λ x13 : ι → ι . λ x14 . 0)) (λ x10 x11 . 0)) (λ x9 : (ι → ι) → ι . λ x10 . x7 (λ x11 x12 : ι → ι . λ x13 . 0) (λ x11 x12 . 0)) (λ x9 : ι → ι . λ x10 . x3 (λ x11 : (ι → ι) → ((ι → ι) → ι) → ι . x1 (λ x12 x13 x14 . 0) 0) (λ x11 : ι → ι . x7 (λ x12 x13 : ι → ι . λ x14 . 0) (λ x12 x13 . 0))))) = setsum (x4 (λ x9 x10 : ι → ι . λ x11 . Inj1 (x10 (x7 (λ x12 x13 : ι → ι . λ x14 . 0) (λ x12 x13 . 0)))) (x4 (λ x9 x10 : ι → ι . λ x11 . x7 (λ x12 x13 : ι → ι . λ x14 . Inj1 0) (λ x12 x13 . x2 (λ x14 . 0) 0 (λ x14 : (ι → ι) → ι . λ x15 : ι → ι . 0) 0 0 0)) (Inj0 x5) (Inj1 (x7 (λ x9 x10 : ι → ι . λ x11 . 0) (λ x9 x10 . 0)))) (x6 (λ x9 : ι → ι → ι . Inj0 (x9 0 0)) (λ x9 : ι → ι . 0))) x5) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι . x2 (λ x9 . x5) (x6 x5 (x1 (λ x9 x10 x11 . x0 (λ x12 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x0 (λ x14 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x14 : ((ι → ι) → ι) → ι → ι . 0) (λ x14 : (ι → ι) → ι . λ x15 . 0) (λ x14 : ι → ι . λ x15 . 0)) (λ x12 : ((ι → ι) → ι) → ι → ι . setsum 0 0) (λ x12 : (ι → ι) → ι . λ x13 . 0) (λ x12 : ι → ι . λ x13 . x2 (λ x14 . 0) 0 (λ x14 : (ι → ι) → ι . λ x15 : ι → ι . 0) 0 0 0)) (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . Inj1 0) (λ x9 : ι → ι . x9 0))) (setsum (Inj1 (setsum 0 0)) (Inj0 (Inj1 0)))) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . Inj0 0) (x6 (x6 0 x5 x4) (setsum (x7 (x2 (λ x9 . 0) 0 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) 0 0 0)) (Inj0 0)) x5) (x6 (x6 (x2 (λ x9 . 0) (x2 (λ x9 . 0) 0 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) 0 0 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x11 : ((ι → ι) → ι) → ι → ι . 0) (λ x11 : (ι → ι) → ι . λ x12 . 0) (λ x11 : ι → ι . λ x12 . 0)) 0 (Inj0 0) (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x9 : ι → ι . 0))) (x2 (λ x9 . x0 (λ x10 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x10 : ((ι → ι) → ι) → ι → ι . 0) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . 0)) (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x9 : ι → ι . 0)) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . setsum 0 0) (Inj1 0) 0 0) x4) (x6 (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . setsum 0 0) (λ x9 : ((ι → ι) → ι) → ι → ι . x7 0) (λ x9 : (ι → ι) → ι . λ x10 . 0) (λ x9 : ι → ι . λ x10 . setsum 0 0)) (Inj1 x5) (x6 0 (x7 0) (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x9 : ι → ι . 0)))) (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . Inj1 (x0 (λ x10 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x10 : ((ι → ι) → ι) → ι → ι . 0) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . 0))) (λ x9 : ι → ι . x9 (x7 0)))) (x7 x5) = x5) ⟶ (∀ x4 : ι → (ι → ι) → (ι → ι) → ι . ∀ x5 x6 : ι → ι . ∀ x7 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x1 (λ x9 x10 x11 . x11) (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . Inj1 0) (λ x9 : ((ι → ι) → ι) → ι → ι . x5 (x9 (λ x10 : ι → ι . 0) (x6 0))) (λ x9 : (ι → ι) → ι . λ x10 . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x3 (λ x13 : (ι → ι) → ((ι → ι) → ι) → ι . x11 0 (λ x14 : ι → ι . λ x15 . 0) (λ x14 . 0)) (λ x13 : ι → ι . 0)) (λ x11 : ((ι → ι) → ι) → ι → ι . setsum (x9 (λ x12 . 0)) (Inj0 0)) (λ x11 : (ι → ι) → ι . λ x12 . Inj0 (setsum 0 0)) (λ x11 : ι → ι . λ x12 . x12)) (λ x9 : ι → ι . λ x10 . Inj0 (x7 (x3 (λ x11 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x11 : ι → ι . 0)) (λ x11 : ι → ι . λ x12 . Inj1 0) (λ x11 . 0) (x7 0 (λ x11 : ι → ι . λ x12 . 0) (λ x11 . 0) 0)))) = setsum (Inj0 (x5 (x2 (λ x9 . x9) (x1 (λ x9 x10 x11 . 0) 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x3 (λ x11 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x11 : ι → ι . 0)) (Inj1 0) (Inj1 0) (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x9 : ι → ι . 0))))) (setsum 0 (Inj1 (x1 (λ x9 x10 x11 . x7 0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 . 0) 0) (Inj0 0))))) ⟶ (∀ x4 x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 : (ι → ι → ι → ι) → ι . x1 (λ x9 x10 x11 . x0 (λ x12 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x13 (λ x14 : ι → ι . x11) (λ x14 . x2 (λ x15 . setsum 0 0) 0 (λ x15 : (ι → ι) → ι . λ x16 : ι → ι . x0 (λ x17 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x18 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x17 : ((ι → ι) → ι) → ι → ι . 0) (λ x17 : (ι → ι) → ι . λ x18 . 0) (λ x17 : ι → ι . λ x18 . 0)) (Inj1 0) (x3 (λ x15 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x15 : ι → ι . 0)) x11) (x0 (λ x14 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x12 0 (λ x16 : ι → ι . λ x17 . 0) (λ x16 . 0)) (λ x14 : ((ι → ι) → ι) → ι → ι . x2 (λ x15 . 0) 0 (λ x15 : (ι → ι) → ι . λ x16 : ι → ι . 0) 0 0 0) (λ x14 : (ι → ι) → ι . λ x15 . x12 0 (λ x16 : ι → ι . λ x17 . 0) (λ x16 . 0)) (λ x14 : ι → ι . λ x15 . x1 (λ x16 x17 x18 . 0) 0))) (λ x12 : ((ι → ι) → ι) → ι → ι . x9) (λ x12 : (ι → ι) → ι . λ x13 . 0) (λ x12 : ι → ι . λ x13 . 0)) (x7 (λ x9 x10 x11 . x10)) = Inj0 (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . x7 (λ x10 x11 x12 . x9 (λ x13 . x12) (λ x13 : ι → ι . Inj1 0))) (λ x9 : ι → ι . Inj1 0))) ⟶ (∀ x4 : ι → ι → (ι → ι) → ι → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι → ι) → ι . ∀ x7 . x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x9 : ((ι → ι) → ι) → ι → ι . 0) (λ x9 : (ι → ι) → ι . λ x10 . x2 (λ x11 . x11) x7 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . x10) 0 (setsum 0 (x1 (λ x11 x12 x13 . x10) (x0 (λ x11 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x11 : ((ι → ι) → ι) → ι → ι . 0) (λ x11 : (ι → ι) → ι . λ x12 . 0) (λ x11 : ι → ι . λ x12 . 0)))) 0) (λ x9 : ι → ι . λ x10 . 0) = x2 Inj0 (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . Inj0 0) (λ x9 : ((ι → ι) → ι) → ι → ι . x3 (λ x10 : (ι → ι) → ((ι → ι) → ι) → ι . x9 (λ x11 : ι → ι . Inj0 0) 0) (λ x10 : ι → ι . x6 x7 (λ x11 : ι → ι . λ x12 . setsum 0 0))) (λ x9 : (ι → ι) → ι . λ x10 . x1 (λ x11 x12 x13 . 0) (x0 (λ x11 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x11 0 (λ x13 : ι → ι . λ x14 . 0) (λ x13 . 0)) (λ x11 : ((ι → ι) → ι) → ι → ι . Inj1 0) (λ x11 : (ι → ι) → ι . λ x12 . 0) (λ x11 : ι → ι . λ x12 . setsum 0 0))) (λ x9 : ι → ι . x9)) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . setsum (x1 (λ x13 x14 x15 . x13) 0) (x1 (λ x13 x14 x15 . x1 (λ x16 x17 x18 . 0) 0) (x1 (λ x13 x14 x15 . 0) 0))) (λ x11 : ((ι → ι) → ι) → ι → ι . x7) (λ x11 : (ι → ι) → ι . λ x12 . 0) (λ x11 : ι → ι . λ x12 . setsum 0 (x11 0))) (Inj1 0) (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x10 (λ x11 : ι → ι . x0 (λ x12 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . Inj1 0) (λ x12 : ((ι → ι) → ι) → ι → ι . 0) (λ x12 : (ι → ι) → ι . λ x13 . setsum 0 0) (λ x12 : ι → ι . λ x13 . x0 (λ x14 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x14 : ((ι → ι) → ι) → ι → ι . 0) (λ x14 : (ι → ι) → ι . λ x15 . 0) (λ x14 : ι → ι . λ x15 . 0))) (λ x11 . Inj1 (Inj0 0)) (Inj1 0)) (λ x9 : ((ι → ι) → ι) → ι → ι . x2 (λ x10 . 0) x5 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . Inj0 0) (x6 (x1 (λ x10 x11 x12 . 0) 0) (λ x10 : ι → ι . λ x11 . x7)) (x6 (setsum 0 0) (λ x10 : ι → ι . λ x11 . x10 0)) (x1 (λ x10 x11 x12 . x3 (λ x13 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x13 : ι → ι . 0)) (x6 0 (λ x10 : ι → ι . λ x11 . 0)))) (λ x9 : (ι → ι) → ι . λ x10 . x7) (λ x9 : ι → ι . setsum (x1 (λ x10 x11 x12 . x11) (x6 0 (λ x10 : ι → ι . λ x11 . 0))))) (Inj0 (x3 (λ x9 : (ι → ι) → ((ι → ι) → ι) → ι . x2 (λ x10 . Inj0 0) 0 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . x1 (λ x12 x13 x14 . 0) 0) 0 0 (setsum 0 0)) (λ x9 : ι → ι . x0 (λ x10 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x1 (λ x12 x13 x14 . 0) 0) (λ x10 : ((ι → ι) → ι) → ι → ι . Inj0 0) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . Inj1 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → ι → ι) → ι . ∀ x6 x7 . x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x9 : ((ι → ι) → ι) → ι → ι . x7) (λ x9 : (ι → ι) → ι . λ x10 . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x11 : ((ι → ι) → ι) → ι → ι . x10) (λ x11 : (ι → ι) → ι . λ x12 . 0) (λ x11 : ι → ι . λ x12 . x12)) (λ x9 : ι → ι . λ x10 . x3 (λ x11 : (ι → ι) → ((ι → ι) → ι) → ι . x0 (λ x12 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x12 : ((ι → ι) → ι) → ι → ι . 0) (λ x12 : (ι → ι) → ι . λ x13 . x3 (λ x14 : (ι → ι) → ((ι → ι) → ι) → ι . x13) (λ x14 : ι → ι . x3 (λ x15 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x15 : ι → ι . 0))) (λ x12 : ι → ι . λ x13 . Inj0 (x12 0))) (λ x11 : ι → ι . x3 (λ x12 : (ι → ι) → ((ι → ι) → ι) → ι . 0) (λ x12 : ι → ι . setsum 0 (Inj0 0)))) = x0 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . x7) (λ x9 : ((ι → ι) → ι) → ι → ι . Inj1 (Inj0 (x3 (λ x10 : (ι → ι) → ((ι → ι) → ι) → ι . Inj0 0) (λ x10 : ι → ι . x9 (λ x11 : ι → ι . 0) 0)))) (λ x9 : (ι → ι) → ι . λ x10 . x10) (λ x9 : ι → ι . λ x10 . setsum x7 (Inj1 0))) ⟶ False (proof)Theorem bdd76.. : ∀ x0 : (ι → ι) → ι → (ι → ι → ι → ι) → ι . ∀ x1 : (ι → ι) → ι → ((ι → ι → ι) → ι) → (ι → ι → ι) → ι . ∀ x2 : (((((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι) → ι → ι) → ι → ι . ∀ x3 : ((ι → ((ι → ι) → ι) → ι → ι → ι) → ι) → (ι → ι → ι) → (ι → ι → ι) → ((ι → ι) → ι) → ι → ι . (∀ x4 : (ι → (ι → ι) → ι → ι) → ι . ∀ x5 . ∀ x6 : (ι → ι) → ι → ι → ι . ∀ x7 : ((ι → ι) → ι) → ι . x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . x5) (λ x9 x10 . x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . x9) (λ x11 x12 . 0) (λ x11 x12 . setsum (Inj0 (Inj0 0)) (x2 (λ x13 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x14 . 0) 0)) (λ x11 : ι → ι . x10) (setsum (x7 (λ x11 : ι → ι . x9)) x9)) (λ x9 x10 . x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . x2 (λ x12 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x13 . 0) (x0 (λ x12 . setsum 0 0) 0 (λ x12 x13 x14 . x2 (λ x15 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x16 . 0) 0))) (λ x11 x12 . 0) (λ x11 x12 . 0) (λ x11 : ι → ι . x9) (x6 (λ x11 . 0) (setsum 0 0) (setsum x10 (Inj1 0)))) (λ x9 : ι → ι . 0) (Inj1 (x6 (λ x9 . x2 (λ x10 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x11 . x10 (λ x12 : (ι → ι) → ι → ι . λ x13 x14 . 0) 0) (x7 (λ x10 : ι → ι . 0))) (x0 (λ x9 . x2 (λ x10 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x11 . 0) 0) (Inj1 0) (λ x9 x10 x11 . x1 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . 0) (λ x12 x13 . 0))) (Inj0 (Inj0 0)))) = setsum x5 0) ⟶ (∀ x4 x5 x6 x7 . x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . x3 (λ x10 : ι → ((ι → ι) → ι) → ι → ι → ι . x2 (λ x11 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x12 . 0) (x1 (λ x11 . 0) x6 (λ x11 : ι → ι → ι . x1 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . 0) (λ x12 x13 . 0)) (λ x11 x12 . x3 (λ x13 : ι → ((ι → ι) → ι) → ι → ι → ι . 0) (λ x13 x14 . 0) (λ x13 x14 . 0) (λ x13 : ι → ι . 0) 0))) (λ x10 x11 . setsum 0 (Inj0 (setsum 0 0))) (λ x10 x11 . Inj0 (x9 x10 (λ x12 : ι → ι . 0) 0 (x1 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . 0) (λ x12 x13 . 0)))) (λ x10 : ι → ι . x0 (λ x11 . 0) (x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . setsum 0 0) (λ x11 x12 . 0) (λ x11 x12 . setsum 0 0) (λ x11 : ι → ι . x1 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . 0) (λ x12 x13 . 0)) 0) (λ x11 x12 x13 . x1 (λ x14 . Inj1 0) 0 (λ x14 : ι → ι → ι . x2 (λ x15 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x16 . 0) 0) (λ x14 x15 . setsum 0 0))) 0) (λ x9 x10 . 0) (λ x9 x10 . setsum (setsum x7 (setsum x6 0)) (x2 (λ x11 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x12 . x9) x7)) (λ x9 : ι → ι . Inj1 0) (x1 (λ x9 . 0) 0 (λ x9 : ι → ι → ι . setsum (setsum (setsum 0 0) x5) (setsum x6 0)) (λ x9 x10 . x0 (λ x11 . x7) x7 (λ x11 x12 x13 . 0))) = Inj1 (x2 (λ x9 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x10 . x9 (λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x10) 0) x5)) ⟶ (∀ x4 : ((ι → ι → ι) → ι) → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x2 (λ x9 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x10 . x9 (λ x11 : (ι → ι) → ι → ι . λ x12 x13 . 0) (x9 (λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x11 (λ x14 . x1 (λ x15 . 0) 0 (λ x15 : ι → ι → ι . 0) (λ x15 x16 . 0)) (x0 (λ x14 . 0) 0 (λ x14 x15 x16 . 0))) 0)) x5 = x5) ⟶ (∀ x4 : ι → ι . ∀ x5 : ((ι → ι) → ι → ι → ι) → ι . ∀ x6 : ((ι → ι → ι) → ι) → ι → (ι → ι) → ι → ι . ∀ x7 . x2 (λ x9 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x10 . 0) 0 = x5 (λ x9 : ι → ι . λ x10 x11 . setsum 0 (x3 (λ x12 : ι → ((ι → ι) → ι) → ι → ι → ι . x12 (setsum 0 0) (λ x13 : ι → ι . x10) (x9 0) x10) (λ x12 x13 . x12) (λ x12 x13 . x1 (λ x14 . x1 (λ x15 . 0) 0 (λ x15 : ι → ι → ι . 0) (λ x15 x16 . 0)) 0 (λ x14 : ι → ι → ι . setsum 0 0) (λ x14 x15 . 0)) (λ x12 : ι → ι . x10) x11))) ⟶ (∀ x4 . ∀ x5 : ι → (ι → ι → ι) → (ι → ι) → ι . ∀ x6 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . ∀ x7 . x1 (λ x9 . setsum (x6 (λ x10 . 0) (λ x10 : ι → ι . setsum (setsum 0 0) 0) (λ x10 . Inj0 (setsum 0 0))) (Inj1 (x1 (λ x10 . x1 (λ x11 . 0) 0 (λ x11 : ι → ι → ι . 0) (λ x11 x12 . 0)) (x6 (λ x10 . 0) (λ x10 : ι → ι . 0) (λ x10 . 0)) (λ x10 : ι → ι → ι . Inj0 0) (λ x10 x11 . 0)))) 0 (λ x9 : ι → ι → ι . 0) (λ x9 x10 . x9) = x6 (λ x9 . x9) (λ x9 : ι → ι . 0) (λ x9 . x2 (λ x10 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x11 . 0) (x1 (λ x10 . x9) x9 (λ x10 : ι → ι → ι . setsum (x2 (λ x11 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x12 . 0) 0) 0) (λ x10 x11 . setsum (x2 (λ x12 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x13 . 0) 0) (setsum 0 0))))) ⟶ (∀ x4 : ((ι → ι) → (ι → ι) → ι → ι) → ι → (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . x1 (λ x9 . 0) (x7 (λ x9 x10 : ι → ι . λ x11 . 0) (x4 (λ x9 x10 : ι → ι . λ x11 . x3 (λ x12 : ι → ((ι → ι) → ι) → ι → ι → ι . 0) (λ x12 x13 . x2 (λ x14 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x15 . 0) 0) (λ x12 x13 . 0) (λ x12 : ι → ι . x12 0) (x3 (λ x12 : ι → ((ι → ι) → ι) → ι → ι → ι . 0) (λ x12 x13 . 0) (λ x12 x13 . 0) (λ x12 : ι → ι . 0) 0)) (x5 (setsum 0 0)) (λ x9 . x5 (x5 0)))) (λ x9 : ι → ι → ι . x9 x6 (setsum (setsum 0 0) 0)) (λ x9 x10 . x10) = x7 (λ x9 x10 : ι → ι . λ x11 . Inj1 (Inj1 (x7 (λ x12 x13 : ι → ι . λ x14 . x0 (λ x15 . 0) 0 (λ x15 x16 x17 . 0)) (x2 (λ x12 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x13 . 0) 0)))) (x4 (λ x9 x10 : ι → ι . λ x11 . x3 (λ x12 : ι → ((ι → ι) → ι) → ι → ι → ι . x2 (λ x13 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x14 . x0 (λ x15 . 0) 0 (λ x15 x16 x17 . 0)) 0) (λ x12 x13 . 0) (λ x12 x13 . x12) (λ x12 : ι → ι . setsum 0 0) (x1 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . x10 0) (λ x12 x13 . 0))) 0 (λ x9 . 0))) ⟶ (∀ x4 . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : ι → ι . x0 (λ x9 . x0 (λ x10 . 0) (x0 (λ x10 . x6) 0 (λ x10 x11 x12 . Inj1 x10)) (λ x10 x11 x12 . x2 (λ x13 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x14 . 0) 0)) x6 (λ x9 x10 x11 . Inj1 (x0 (setsum 0) (x2 (λ x12 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x13 . x1 (λ x14 . 0) 0 (λ x14 : ι → ι → ι . 0) (λ x14 x15 . 0)) 0) (λ x12 x13 x14 . x12))) = x6) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι . x0 (λ x9 . 0) 0 (λ x9 x10 x11 . Inj0 (x3 (λ x12 : ι → ((ι → ι) → ι) → ι → ι → ι . Inj1 (x12 0 (λ x13 : ι → ι . 0) 0 0)) (λ x12 x13 . x1 (λ x14 . x3 (λ x15 : ι → ((ι → ι) → ι) → ι → ι → ι . 0) (λ x15 x16 . 0) (λ x15 x16 . 0) (λ x15 : ι → ι . 0) 0) (Inj1 0) (λ x14 : ι → ι → ι . 0) (λ x14 x15 . setsum 0 0)) (λ x12 x13 . x3 (λ x14 : ι → ((ι → ι) → ι) → ι → ι → ι . x14 0 (λ x15 : ι → ι . 0) 0 0) (λ x14 x15 . x2 (λ x16 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . λ x17 . 0) 0) (λ x14 x15 . x14) (λ x14 : ι → ι . 0) 0) (λ x12 : ι → ι . x3 (λ x13 : ι → ((ι → ι) → ι) → ι → ι → ι . 0) (λ x13 x14 . Inj1 0) (λ x13 x14 . 0) (λ x13 : ι → ι . x12 0) (Inj0 0)) 0)) = x7 (x7 0 (x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . 0) (λ x9 x10 . x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . x10) (λ x11 x12 . Inj1 0) (λ x11 x12 . Inj1 0) (λ x11 : ι → ι . Inj0 0) (x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . 0) (λ x11 x12 . 0) (λ x11 x12 . 0) (λ x11 : ι → ι . 0) 0)) (λ x9 x10 . x7 0 0) (λ x9 : ι → ι . x1 (λ x10 . 0) (x9 0) (λ x10 : ι → ι → ι . setsum 0 0) (λ x10 x11 . x1 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . 0) (λ x12 x13 . 0))) 0)) 0) ⟶ False (proof)Theorem e5aca.. : ∀ x0 : (ι → ι → (ι → ι) → ι) → ι → (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . ∀ x1 : (ι → ι) → (ι → ι) → ι → (ι → ι) → (ι → ι) → ι → ι . ∀ x2 : (ι → ι → ι) → ι → ι . ∀ x3 : ((ι → ι → ι) → ι → (ι → ι) → ι → ι) → (ι → ι) → ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . (∀ x4 : ι → ι → ι . ∀ x5 : (ι → ι) → (ι → ι) → (ι → ι) → ι → ι . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . x3 (λ x13 : ι → ι → ι . λ x14 . λ x15 : ι → ι . λ x16 . x13 (x0 (λ x17 x18 . λ x19 : ι → ι . x2 (λ x20 x21 . 0) 0) 0 (λ x17 : (ι → ι) → ι . x14) (λ x17 x18 . Inj0 0)) 0) (λ x13 . x12) x10 (λ x13 : ι → ι . x12) (λ x13 . setsum x13 x13) (x0 (λ x13 x14 . λ x15 : ι → ι . x15 (x1 (λ x16 . 0) (λ x16 . 0) 0 (λ x16 . 0) (λ x16 . 0) 0)) 0 (λ x13 : (ι → ι) → ι . x13 (λ x14 . 0)) (λ x13 x14 . x11 (x1 (λ x15 . 0) (λ x15 . 0) 0 (λ x15 . 0) (λ x15 . 0) 0)))) (λ x9 . 0) 0 (λ x9 : ι → ι . setsum (x6 (x1 (λ x10 . x2 (λ x11 x12 . 0) 0) (λ x10 . x9 0) 0 (λ x10 . 0) (λ x10 . 0) (x5 (λ x10 . 0) (λ x10 . 0) (λ x10 . 0) 0))) (x1 (λ x10 . 0) (λ x10 . x6 0) (x5 (λ x10 . 0) (λ x10 . 0) (λ x10 . x3 (λ x11 : ι → ι → ι . λ x12 . λ x13 : ι → ι . λ x14 . 0) (λ x11 . 0) 0 (λ x11 : ι → ι . 0) (λ x11 . 0) 0) (x5 (λ x10 . 0) (λ x10 . 0) (λ x10 . 0) 0)) (λ x10 . Inj1 (x6 0)) (λ x10 . setsum (x3 (λ x11 : ι → ι → ι . λ x12 . λ x13 : ι → ι . λ x14 . 0) (λ x11 . 0) 0 (λ x11 : ι → ι . 0) (λ x11 . 0) 0) x7) 0)) (λ x9 . x3 (λ x10 : ι → ι → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0) (λ x10 . Inj0 (x3 (λ x11 : ι → ι → ι . λ x12 . λ x13 : ι → ι . λ x14 . setsum 0 0) (λ x11 . x10) 0 (λ x11 : ι → ι . x1 (λ x12 . 0) (λ x12 . 0) 0 (λ x12 . 0) (λ x12 . 0) 0) (λ x11 . 0) (Inj0 0))) 0 (λ x10 : ι → ι . setsum (x3 (λ x11 : ι → ι → ι . λ x12 . λ x13 : ι → ι . λ x14 . setsum 0 0) (λ x11 . x11) (x2 (λ x11 x12 . 0) 0) (λ x11 : ι → ι . x9) (λ x11 . Inj0 0) 0) (x1 (λ x11 . x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0)) (λ x11 . x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0)) (x0 (λ x11 x12 . λ x13 : ι → ι . 0) 0 (λ x11 : (ι → ι) → ι . 0) (λ x11 x12 . 0)) (λ x11 . x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0)) (λ x11 . x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0)) (setsum 0 0))) (λ x10 . 0) (x2 (λ x10 x11 . x0 (λ x12 x13 . λ x14 : ι → ι . x13) (x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0)) (λ x12 : (ι → ι) → ι . x2 (λ x13 x14 . 0) 0) (λ x12 x13 . x0 (λ x14 x15 . λ x16 : ι → ι . 0) 0 (λ x14 : (ι → ι) → ι . 0) (λ x14 x15 . 0))) (setsum (Inj0 0) (setsum 0 0)))) (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . Inj0 0) (x1 (λ x9 . x6 (Inj0 0)) (λ x9 . 0) (setsum x7 (x0 (λ x9 x10 . λ x11 : ι → ι . 0) 0 (λ x9 : (ι → ι) → ι . 0) (λ x9 x10 . 0))) (λ x9 . setsum 0 (setsum 0 0)) (λ x9 . Inj0 (x1 (λ x10 . 0) (λ x10 . 0) 0 (λ x10 . 0) (λ x10 . 0) 0)) 0) (λ x9 : ι → ι . x2 (λ x10 x11 . x3 (λ x12 : ι → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x12 . x11) (x9 0) (λ x12 : ι → ι . setsum 0 0) (λ x12 . x2 (λ x13 x14 . 0) 0) 0) (x9 (x5 (λ x10 . 0) (λ x10 . 0) (λ x10 . 0) 0))) (λ x9 . x6 0) 0) = Inj0 (x5 (λ x9 . setsum 0 0) (λ x9 . setsum 0 (Inj0 0)) (setsum x7) (setsum (x4 (x2 (λ x9 x10 . 0) 0) (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . 0) 0 (λ x9 : ι → ι . 0) (λ x9 . 0) 0)) (x6 0)))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 : ι → (ι → ι → ι) → (ι → ι) → ι . x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . 0) (setsum (x2 (λ x9 x10 . x3 (λ x11 : ι → ι → ι . λ x12 . λ x13 : ι → ι . λ x14 . 0) (λ x11 . 0) (Inj1 0) (λ x11 : ι → ι . 0) (λ x11 . x2 (λ x12 x13 . 0) 0) x9) x5) (x1 (λ x9 . 0) (λ x9 . setsum (x2 (λ x10 x11 . 0) 0) (x1 (λ x10 . 0) (λ x10 . 0) 0 (λ x10 . 0) (λ x10 . 0) 0)) (setsum (Inj1 0) (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . 0) 0 (λ x9 : ι → ι . 0) (λ x9 . 0) 0)) (λ x9 . x2 (λ x10 x11 . x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0)) (x3 (λ x10 : ι → ι → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0) (λ x10 . 0) 0 (λ x10 : ι → ι . 0) (λ x10 . 0) 0)) (λ x9 . x0 (λ x10 x11 . λ x12 : ι → ι . 0) x5 (λ x10 : (ι → ι) → ι . 0) (λ x10 x11 . x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0))) (x1 (λ x9 . x2 (λ x10 x11 . 0) 0) (λ x9 . 0) 0 (λ x9 . setsum 0 0) (λ x9 . x3 (λ x10 : ι → ι → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0) (λ x10 . 0) 0 (λ x10 : ι → ι . 0) (λ x10 . 0) 0) (setsum 0 0)))) (λ x9 : ι → ι . x6 (Inj0 (Inj1 0))) (λ x9 . x5) (x2 (λ x9 x10 . x7 (setsum x9 (x7 0 (λ x11 x12 . 0) (λ x11 . 0))) (λ x11 x12 . setsum 0 (setsum 0 0)) (λ x11 . setsum (Inj1 0) 0)) 0) = setsum (Inj1 0) 0) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι → ι . ∀ x5 . ∀ x6 : ((ι → ι) → ι) → ι . ∀ x7 : ι → ι → ι . x2 (λ x9 x10 . setsum (x7 (Inj0 (x6 (λ x11 : ι → ι . 0))) (x2 (λ x11 x12 . Inj1 0) x10)) (x7 (x3 (λ x11 : ι → ι → ι . λ x12 . λ x13 : ι → ι . λ x14 . 0) (λ x11 . Inj1 0) x10 (λ x11 : ι → ι . x10) (λ x11 . x0 (λ x12 x13 . λ x14 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . 0)) (x0 (λ x11 x12 . λ x13 : ι → ι . 0) 0 (λ x11 : (ι → ι) → ι . 0) (λ x11 x12 . 0))) x9)) 0 = x4 (x4 (x0 (λ x9 x10 . λ x11 : ι → ι . 0) (Inj0 (x2 (λ x9 x10 . 0) 0)) (λ x9 : (ι → ι) → ι . 0) (λ x9 . setsum (x1 (λ x10 . 0) (λ x10 . 0) 0 (λ x10 . 0) (λ x10 . 0) 0))) (λ x9 : ι → ι . λ x10 . Inj1 (x2 (λ x11 x12 . x10) (Inj0 0))) (x6 (λ x9 : ι → ι . x0 (λ x10 x11 . λ x12 : ι → ι . x11) (x6 (λ x10 : ι → ι . 0)) (λ x10 : (ι → ι) → ι . x10 (λ x11 . 0)) (λ x10 x11 . x2 (λ x12 x13 . 0) 0)))) (λ x9 : ι → ι . λ x10 . 0) (x2 (λ x9 x10 . x6 (λ x11 : ι → ι . x7 (x2 (λ x12 x13 . 0) 0) x10)) (x2 (λ x9 x10 . x9) (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . setsum 0 0) (λ x9 . 0) x5 (λ x9 : ι → ι . Inj0 0) (λ x9 . 0) (x6 (λ x9 : ι → ι . 0)))))) ⟶ (∀ x4 : (ι → ι) → ι → ι → ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x2 (λ x9 x10 . x7 (x2 (λ x11 x12 . x10) (Inj0 x9))) (x2 (λ x9 x10 . x7 (setsum 0 (x0 (λ x11 x12 . λ x13 : ι → ι . 0) 0 (λ x11 : (ι → ι) → ι . 0) (λ x11 x12 . 0)))) 0) = x7 x6) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι → ι . ∀ x7 . x1 (λ x9 . x0 (λ x10 x11 . λ x12 : ι → ι . setsum (Inj1 0) 0) (setsum (Inj0 x5) (x1 (λ x10 . x0 (λ x11 x12 . λ x13 : ι → ι . 0) 0 (λ x11 : (ι → ι) → ι . 0) (λ x11 x12 . 0)) (λ x10 . x6 0 0) 0 (λ x10 . x7) (λ x10 . setsum 0 0) (setsum 0 0))) (λ x10 : (ι → ι) → ι . Inj0 (x0 (λ x11 x12 . λ x13 : ι → ι . Inj0 0) x9 (λ x11 : (ι → ι) → ι . x7) (λ x11 x12 . x12))) (λ x10 x11 . setsum (setsum 0 x10) (setsum 0 (x1 (λ x12 . 0) (λ x12 . 0) 0 (λ x12 . 0) (λ x12 . 0) 0)))) (λ x9 . Inj1 (Inj1 (x6 0 (Inj1 0)))) (x4 (λ x9 . 0)) (λ x9 . Inj1 0) (λ x9 . x9) x5 = setsum (setsum (setsum (Inj0 (setsum 0 0)) 0) (setsum (setsum x5 (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . 0) 0 (λ x9 : ι → ι . 0) (λ x9 . 0) 0)) (setsum (x1 (λ x9 . 0) (λ x9 . 0) 0 (λ x9 . 0) (λ x9 . 0) 0) 0))) (x6 0 (x0 (λ x9 x10 . λ x11 : ι → ι . x0 (λ x12 x13 . λ x14 : ι → ι . x2 (λ x15 x16 . 0) 0) x7 (λ x12 : (ι → ι) → ι . 0) (λ x12 x13 . x12)) (Inj0 (setsum 0 0)) (λ x9 : (ι → ι) → ι . Inj0 x7) (λ x9 x10 . x0 (λ x11 x12 . λ x13 : ι → ι . 0) (x6 0 0) (λ x11 : (ι → ι) → ι . setsum 0 0) (λ x11 x12 . setsum 0 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x7 : (((ι → ι) → ι) → ι → ι → ι) → ι . x1 (λ x9 . Inj1 x5) (λ x9 . Inj1 (x0 (λ x10 x11 . λ x12 : ι → ι . setsum (setsum 0 0) (x2 (λ x13 x14 . 0) 0)) 0 (λ x10 : (ι → ι) → ι . 0) (λ x10 x11 . setsum 0 (Inj0 0)))) (x2 (λ x9 x10 . 0) x5) (λ x9 . 0) (λ x9 . 0) (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . 0) (Inj1 (x6 (x6 0 (λ x9 : ι → ι . λ x10 . 0) (λ x9 . 0) 0) (λ x9 : ι → ι . λ x10 . x2 (λ x11 x12 . 0) 0) (λ x9 . x9) 0)) (λ x9 : ι → ι . x6 (x7 (λ x10 : (ι → ι) → ι . λ x11 x12 . x1 (λ x13 . 0) (λ x13 . 0) 0 (λ x13 . 0) (λ x13 . 0) 0)) (λ x10 : ι → ι . λ x11 . x2 (λ x12 x13 . x12) (x9 0)) (λ x10 . 0) (Inj0 (x6 0 (λ x10 : ι → ι . λ x11 . 0) (λ x10 . 0) 0))) (λ x9 . setsum 0 (setsum 0 (Inj1 0))) (x2 (λ x9 x10 . x2 (λ x11 x12 . 0) (setsum 0 0)) (setsum (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . 0) 0 (λ x9 : ι → ι . 0) (λ x9 . 0) 0) (x6 0 (λ x9 : ι → ι . λ x10 . 0) (λ x9 . 0) 0)))) = Inj0 0) ⟶ (∀ x4 x5 . ∀ x6 : ((ι → ι) → ι) → ι → ι → ι → ι . ∀ x7 . x0 (λ x9 x10 . λ x11 : ι → ι . x2 (λ x12 x13 . x0 (λ x14 x15 . λ x16 : ι → ι . 0) (setsum 0 (Inj0 0)) (λ x14 : (ι → ι) → ι . x3 (λ x15 : ι → ι → ι . λ x16 . λ x17 : ι → ι . λ x18 . x16) (λ x15 . 0) 0 (λ x15 : ι → ι . 0) (λ x15 . Inj1 0) (Inj0 0)) (λ x14 x15 . x12)) 0) x7 (λ x9 : (ι → ι) → ι . x5) (λ x9 x10 . x9) = x2 (λ x9 x10 . setsum x7 (x1 (λ x11 . x11) (λ x11 . Inj1 (setsum 0 0)) (setsum (x1 (λ x11 . 0) (λ x11 . 0) 0 (λ x11 . 0) (λ x11 . 0) 0) (x1 (λ x11 . 0) (λ x11 . 0) 0 (λ x11 . 0) (λ x11 . 0) 0)) (λ x11 . x9) (λ x11 . x11) (x6 (λ x11 : ι → ι . Inj1 0) 0 (Inj1 0) 0))) (Inj1 (Inj1 (x2 (λ x9 x10 . setsum 0 0) (x3 (λ x9 : ι → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 . 0) 0 (λ x9 : ι → ι . 0) (λ x9 . 0) 0))))) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 . ∀ x6 : (ι → (ι → ι) → ι → ι) → ι . ∀ x7 : (((ι → ι) → ι) → ι → ι → ι) → ι → (ι → ι) → ι . x0 (λ x9 x10 . λ x11 : ι → ι . x2 (λ x12 x13 . x1 (λ x14 . x11 x13) (λ x14 . 0) 0 (λ x14 . x0 (λ x15 x16 . λ x17 : ι → ι . x2 (λ x18 x19 . 0) 0) (Inj1 0) (λ x15 : (ι → ι) → ι . Inj0 0) (λ x15 x16 . x14)) (λ x14 . 0) (Inj1 0)) (setsum 0 0)) 0 (λ x9 : (ι → ι) → ι . 0) (λ x9 x10 . x6 (λ x11 . λ x12 : ι → ι . λ x13 . 0)) = x6 (λ x9 . λ x10 : ι → ι . λ x11 . x10 0)) ⟶ False (proof)Theorem d7022.. : ∀ x0 : (ι → ι → ι) → (((ι → ι → ι) → ι) → ι → ι) → ι . ∀ x1 : ((ι → ι) → (ι → (ι → ι) → ι) → ι) → ι → ι . ∀ x2 : (((ι → (ι → ι) → ι → ι) → ι → ι → ι) → ι → ι → ι → ι → ι) → ((((ι → ι) → ι → ι) → ι) → ι → ι) → ι . ∀ x3 : ((((ι → ι) → (ι → ι) → ι → ι) → ι) → ι) → ι → ι → ι . (∀ x4 : (((ι → ι) → ι) → ι) → ((ι → ι) → ι → ι) → ι → ι → ι . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x1 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι . Inj1 0) (x1 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι . x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι . x3 (λ x14 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) (Inj0 0)) (x2 (λ x10 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 x14 . setsum 0 0) (λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . 0)))) (x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . Inj0 (x0 (λ x10 x11 . x11) (λ x10 : (ι → ι → ι) → ι . λ x11 . x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι . 0) 0))) x6 (x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . x10) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . setsum 0 0) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . setsum 0 0)))) (x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . setsum 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x2 (λ x12 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 x16 . x2 (λ x17 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x18 x19 x20 x21 . 0) (λ x17 : ((ι → ι) → ι → ι) → ι . λ x18 . 0)) (λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . Inj1 0)) (x0 (λ x11 x12 . Inj0 0) (λ x11 : (ι → ι → ι) → ι . λ x12 . 0)) (setsum x10 0))) = x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . x7 (λ x11 . λ x12 : ι → ι . λ x13 . x10 (Inj0 (Inj0 0)) (λ x14 . Inj0 0)) (λ x11 : ι → ι . λ x12 . 0)) (setsum 0 (Inj1 (x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x3 (λ x10 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) x6 (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . 0) 0))))) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . ∀ x6 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι → ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → ι . x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x0 (λ x10 x11 . setsum 0 (x2 (λ x12 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 x16 . setsum 0 0) (λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . 0))) (λ x10 : (ι → ι → ι) → ι . λ x11 . Inj1 0)) (x0 (λ x9 x10 . x10) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj0 (x9 (λ x11 x12 . setsum 0 0)))) (Inj0 (Inj0 (x0 (λ x9 x10 . Inj0 0) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj1 0)))) = Inj1 (x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x5 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . 0)) (Inj0 (Inj0 0)) (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x7 (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) (λ x11 : ι → ι . Inj0 0))))) ⟶ (∀ x4 x5 . ∀ x6 x7 : ι → ι . x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . x11) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . Inj1 (setsum (x7 (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0)) 0)) = Inj1 (x0 (λ x9 x10 . x6 0) (λ x9 : (ι → ι → ι) → ι . λ x10 . x7 (x9 (λ x11 x12 . Inj0 0))))) ⟶ (∀ x4 x5 . ∀ x6 x7 : (ι → ι) → ι . x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x7 (λ x11 . setsum (x9 (λ x12 : ι → ι . λ x13 . x0 (λ x14 x15 . 0) (λ x14 : (ι → ι → ι) → ι . λ x15 . 0))) 0)) = x7 (λ x9 . x0 (λ x10 x11 . x9) (λ x10 : (ι → ι → ι) → ι . λ x11 . 0))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . ∀ x7 : ι → (ι → ι) → ι → ι → ι . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . 0) 0 = x4 (x4 0)) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 : ι → ι → ι . ∀ x7 . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . x10 (Inj1 (setsum (Inj0 0) 0)) (λ x11 . 0)) (setsum (x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . x0 (λ x16 x17 . 0) (λ x16 : (ι → ι → ι) → ι . λ x17 . 0)) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . 0))) 0) = x5 (Inj1 (setsum 0 (Inj0 (Inj1 0)))) (x4 0)) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : (ι → (ι → ι) → ι) → ι → ι . x0 (λ x9 x10 . setsum (x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . setsum 0 0) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . 0)) (setsum (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x2 (λ x12 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 x16 . 0) (λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . 0)) x10 (Inj0 0)) (setsum (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) (x7 (λ x11 . λ x12 : ι → ι . 0) 0)))) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj1 0) = x4 0) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι → ι → ι . ∀ x6 : (ι → (ι → ι) → ι → ι) → (ι → ι) → (ι → ι) → ι → ι . ∀ x7 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → (ι → ι) → ι . x0 (λ x9 x10 . x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . 0) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . x3 (λ x13 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x2 (λ x14 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x15 x16 x17 x18 . x16) (λ x14 : ((ι → ι) → ι → ι) → ι . λ x15 . setsum 0 0)) 0 (setsum 0 0))) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj1 (x7 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . λ x13 . x0 (λ x14 x15 . setsum 0 0) (λ x14 : (ι → ι → ι) → ι . λ x15 . x15)) (λ x11 . x9 (λ x12 x13 . 0)))) = x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . setsum (x0 (λ x14 x15 . 0) (λ x14 : (ι → ι → ι) → ι . λ x15 . setsum 0 0)) (x3 (λ x14 : ((ι → ι) → (ι → ι) → ι → ι) → ι . setsum x11 (x14 (λ x15 x16 : ι → ι . λ x17 . 0))) 0 (setsum (setsum 0 0) 0))) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . Inj0 (x1 (λ x11 : ι → ι . λ x12 : ι → (ι → ι) → ι . Inj0 (setsum 0 0)) (x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . x12) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . x10))))) ⟶ False (proof)Theorem 45d74.. : ∀ x0 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . ∀ x1 : ((ι → ι) → ι) → ((((ι → ι) → ι) → ι) → ι) → ι . ∀ x2 : ((ι → ι → ι) → (((ι → ι) → ι) → ι → ι) → ι → ι) → ((ι → (ι → ι) → ι) → ι) → ι . ∀ x3 : (ι → ι) → (((ι → ι) → ι) → ι) → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : (((ι → ι) → ι → ι) → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x7 . x3 (λ x9 . x9) (λ x9 : (ι → ι) → ι . x1 (λ x10 : ι → ι . x10 (setsum (x0 (λ x11 : (ι → ι) → ι . 0) 0 (λ x11 . 0)) (setsum 0 0))) (λ x10 : ((ι → ι) → ι) → ι . x9 (λ x11 . setsum (x9 (λ x12 . 0)) (Inj1 0)))) = x1 (λ x9 : ι → ι . x7) (λ x9 : ((ι → ι) → ι) → ι . setsum (x2 (λ x10 : ι → ι → ι . λ x11 : ((ι → ι) → ι) → ι → ι . λ x12 . x0 (λ x13 : (ι → ι) → ι . Inj0 0) (Inj1 0) (λ x13 . 0)) (λ x10 : ι → (ι → ι) → ι . 0)) (Inj0 0))) ⟶ (∀ x4 : ι → ι . ∀ x5 : ((ι → ι) → (ι → ι) → ι) → ι . ∀ x6 x7 . x3 (λ x9 . setsum (x2 (λ x10 : ι → ι → ι . λ x11 : ((ι → ι) → ι) → ι → ι . λ x12 . x11 (λ x13 : ι → ι . x11 (λ x14 : ι → ι . 0) 0) 0) (λ x10 : ι → (ι → ι) → ι . Inj0 (Inj0 0))) (setsum (x3 (λ x10 . x1 (λ x11 : ι → ι . 0) (λ x11 : ((ι → ι) → ι) → ι . 0)) (λ x10 : (ι → ι) → ι . x10 (λ x11 . 0))) (x0 (λ x10 : (ι → ι) → ι . x9) (x0 (λ x10 : (ι → ι) → ι . 0) 0 (λ x10 . 0)) (λ x10 . x2 (λ x11 : ι → ι → ι . λ x12 : ((ι → ι) → ι) → ι → ι . λ x13 . 0) (λ x11 : ι → (ι → ι) → ι . 0))))) (λ x9 : (ι → ι) → ι . x3 (λ x10 . 0) (λ x10 : (ι → ι) → ι . Inj1 (x1 (λ x11 : ι → ι . 0) (λ x11 : ((ι → ι) → ι) → ι . x7)))) = x3 (λ x9 . setsum (x3 (λ x10 . x6) (λ x10 : (ι → ι) → ι . setsum x6 x7)) (Inj0 (setsum (x1 (λ x10 : ι → ι . 0) (λ x10 : ((ι → ι) → ι) → ι . 0)) (x1 (λ x10 : ι → ι . 0) (λ x10 : ((ι → ι) → ι) → ι . 0))))) (λ x9 : (ι → ι) → ι . x2 (λ x10 : ι → ι → ι . λ x11 : ((ι → ι) → ι) → ι → ι . λ x12 . 0) (λ x10 : ι → (ι → ι) → ι . x2 (λ x11 : ι → ι → ι . λ x12 : ((ι → ι) → ι) → ι → ι . Inj0) (λ x11 : ι → (ι → ι) → ι . x9 (λ x12 . x1 (λ x13 : ι → ι . 0) (λ x13 : ((ι → ι) → ι) → ι . 0)))))) ⟶ (∀ x4 . ∀ x5 : ι → ((ι → ι) → ι → ι) → ι → ι → ι . ∀ x6 : (ι → ι → ι) → ι . ∀ x7 : ι → (ι → ι) → (ι → ι) → ι → ι . x2 (λ x9 : ι → ι → ι . λ x10 : ((ι → ι) → ι) → ι → ι . λ x11 . 0) (λ x9 : ι → (ι → ι) → ι . 0) = x4) ⟶ (∀ x4 : ι → ι . ∀ x5 : ((ι → ι → ι) → (ι → ι) → ι → ι) → ι → (ι → ι) → ι . ∀ x6 x7 . x2 (λ x9 : ι → ι → ι . λ x10 : ((ι → ι) → ι) → ι → ι . λ x11 . Inj0 (x1 (λ x12 : ι → ι . Inj1 0) (λ x12 : ((ι → ι) → ι) → ι . 0))) (λ x9 : ι → (ι → ι) → ι . setsum (x5 (λ x10 : ι → ι → ι . λ x11 : ι → ι . λ x12 . x2 (λ x13 : ι → ι → ι . λ x14 : ((ι → ι) → ι) → ι → ι . λ x15 . Inj0 0) (λ x13 : ι → (ι → ι) → ι . x1 (λ x14 : ι → ι . 0) (λ x14 : ((ι → ι) → ι) → ι . 0))) (x0 (λ x10 : (ι → ι) → ι . 0) 0 (λ x10 . x2 (λ x11 : ι → ι → ι . λ x12 : ((ι → ι) → ι) → ι → ι . λ x13 . 0) (λ x11 : ι → (ι → ι) → ι . 0))) (λ x10 . setsum (x0 (λ x11 : (ι → ι) → ι . 0) 0 (λ x11 . 0)) 0)) (setsum (x1 (λ x10 : ι → ι . 0) (λ x10 : ((ι → ι) → ι) → ι . setsum 0 0)) 0)) = setsum x6 0) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x1 (λ x9 : ι → ι . setsum x6 0) (λ x9 : ((ι → ι) → ι) → ι . x3 (λ x10 . setsum x10 (Inj0 (x2 (λ x11 : ι → ι → ι . λ x12 : ((ι → ι) → ι) → ι → ι . λ x13 . 0) (λ x11 : ι → (ι → ι) → ι . 0)))) (λ x10 : (ι → ι) → ι . x9 (λ x11 : ι → ι . 0))) = x3 (λ x9 . x1 (λ x10 : ι → ι . Inj1 x6) (λ x10 : ((ι → ι) → ι) → ι . setsum (x1 (λ x11 : ι → ι . x3 (λ x12 . 0) (λ x12 : (ι → ι) → ι . 0)) (λ x11 : ((ι → ι) → ι) → ι . 0)) 0)) (λ x9 : (ι → ι) → ι . setsum 0 (Inj1 0))) ⟶ (∀ x4 x5 . ∀ x6 : ι → (ι → ι → ι) → ι . ∀ x7 . x1 (λ x9 : ι → ι . Inj1 0) (λ x9 : ((ι → ι) → ι) → ι . x1 (λ x10 : ι → ι . x7) (λ x10 : ((ι → ι) → ι) → ι . 0)) = Inj0 (setsum (Inj1 (Inj0 (Inj1 0))) (Inj0 (setsum (x6 0 (λ x9 x10 . 0)) (setsum 0 0))))) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 : ι → ι → (ι → ι) → ι → ι . ∀ x6 x7 . x0 (λ x9 : (ι → ι) → ι . 0) 0 (λ x9 . 0) = x5 x6 0 (λ x9 . x2 (λ x10 : ι → ι → ι . λ x11 : ((ι → ι) → ι) → ι → ι . λ x12 . 0) (λ x10 : ι → (ι → ι) → ι . 0)) x6) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (ι → (ι → ι) → ι) → ((ι → ι) → ι) → ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . x0 (λ x9 : (ι → ι) → ι . 0) (x6 (λ x9 . λ x10 : ι → ι . 0) (λ x9 : ι → ι . x6 (λ x10 . λ x11 : ι → ι . setsum 0 (x3 (λ x12 . 0) (λ x12 : (ι → ι) → ι . 0))) (λ x10 : ι → ι . Inj1 (setsum 0 0)) (Inj1 (Inj1 0))) (Inj0 0)) (λ x9 . x6 (λ x10 . λ x11 : ι → ι . x7 0 (λ x12 : ι → ι . x2 (λ x13 : ι → ι → ι . λ x14 : ((ι → ι) → ι) → ι → ι . λ x15 . 0) (λ x13 : ι → (ι → ι) → ι . setsum 0 0)) (λ x12 . Inj1 (Inj0 0)) (x1 (λ x12 : ι → ι . 0) (λ x12 : ((ι → ι) → ι) → ι . 0))) (λ x10 : ι → ι . Inj0 0) 0) = setsum (x4 0) 0) ⟶ False (proof)Theorem c4d88.. : ∀ x0 : (((ι → ι) → ι) → ι) → ι → ι . ∀ x1 : (ι → ι) → (ι → ι) → ι . ∀ x2 : (ι → (((ι → ι) → ι) → (ι → ι) → ι) → ι) → ι → ι . ∀ x3 : (((ι → ι) → ι → ι → ι → ι) → ι) → (ι → ι → ι) → ((ι → ι) → ι) → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → ι → (ι → ι) → ι → ι . ∀ x7 : ι → ι → ι → ι → ι . x3 (λ x9 : (ι → ι) → ι → ι → ι → ι . Inj1 0) (λ x9 x10 . 0) (λ x9 : ι → ι . 0) = Inj0 x4) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x3 (λ x9 : (ι → ι) → ι → ι → ι → ι . x3 (λ x10 : (ι → ι) → ι → ι → ι → ι . x2 (λ x11 . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι . x0 (λ x13 : (ι → ι) → ι . Inj0 0) 0) (Inj1 (Inj0 0))) (λ x10 x11 . x3 (λ x12 : (ι → ι) → ι → ι → ι → ι . x0 (λ x13 : (ι → ι) → ι . x3 (λ x14 : (ι → ι) → ι → ι → ι → ι . 0) (λ x14 x15 . 0) (λ x14 : ι → ι . 0)) x11) (λ x12 x13 . Inj1 x11) (λ x12 : ι → ι . x9 (λ x13 . x2 (λ x14 . λ x15 : ((ι → ι) → ι) → (ι → ι) → ι . 0) 0) 0 (x1 (λ x13 . 0) (λ x13 . 0)) x11)) (λ x10 : ι → ι . 0)) (λ x9 x10 . x1 (λ x11 . x3 (λ x12 : (ι → ι) → ι → ι → ι → ι . x9) (λ x12 x13 . x3 (λ x14 : (ι → ι) → ι → ι → ι → ι . x2 (λ x15 . λ x16 : ((ι → ι) → ι) → (ι → ι) → ι . 0) 0) (λ x14 x15 . setsum 0 0) (λ x14 : ι → ι . 0)) (λ x12 : ι → ι . 0)) (λ x11 . Inj1 (Inj1 (x0 (λ x12 : (ι → ι) → ι . 0) 0)))) (λ x9 : ι → ι . x9 x6) = x1 (λ x9 . setsum (x5 (x3 (λ x10 : (ι → ι) → ι → ι → ι → ι . setsum 0 0) (λ x10 x11 . Inj1 0) (λ x10 : ι → ι . 0))) 0) (λ x9 . setsum (x5 (x0 (λ x10 : (ι → ι) → ι . x0 (λ x11 : (ι → ι) → ι . 0) 0) 0)) (x1 (λ x10 . Inj0 x9) (λ x10 . x0 (λ x11 : (ι → ι) → ι . setsum 0 0) (Inj0 0))))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : ι → ι → (ι → ι) → ι → ι . x2 (λ x9 . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι . setsum (x3 (λ x11 : (ι → ι) → ι → ι → ι → ι . x10 (λ x12 : ι → ι . 0) (λ x12 . Inj0 0)) (λ x11 x12 . Inj0 0) (λ x11 : ι → ι . x2 (λ x12 . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι . x11 0) (x0 (λ x12 : (ι → ι) → ι . 0) 0))) 0) (x7 (x3 (λ x9 : (ι → ι) → ι → ι → ι → ι . x0 (λ x10 : (ι → ι) → ι . Inj0 0) 0) (λ x9 x10 . x10) (λ x9 : ι → ι . 0)) (x0 (λ x9 : (ι → ι) → ι . setsum 0 (Inj1 0)) 0) (λ x9 . 0) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι . x0 (λ x11 : (ι → ι) → ι . x1 (λ x12 . 0) (λ x12 . 0)) (x0 (λ x11 : (ι → ι) → ι . 0) 0)) 0)) = setsum 0 (Inj0 (Inj0 (setsum (setsum 0 0) (Inj1 0))))) ⟶ (∀ x4 x5 : ι → ι . ∀ x6 x7 . x2 (λ x9 . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι . x6) (x1 (λ x9 . Inj0 x7) (λ x9 . Inj1 (setsum 0 (setsum 0 0)))) = x1 (λ x9 . setsum (Inj1 (x3 (λ x10 : (ι → ι) → ι → ι → ι → ι . 0) (λ x10 x11 . 0) (λ x10 : ι → ι . x0 (λ x11 : (ι → ι) → ι . 0) 0))) (Inj0 (Inj1 0))) (λ x9 . setsum (x3 (λ x10 : (ι → ι) → ι → ι → ι → ι . x6) (λ x10 x11 . x2 (λ x12 . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι . 0) (x3 (λ x12 : (ι → ι) → ι → ι → ι → ι . 0) (λ x12 x13 . 0) (λ x12 : ι → ι . 0))) (λ x10 : ι → ι . Inj1 0)) (x2 (λ x10 . λ x11 : ((ι → ι) → ι) → (ι → ι) → ι . x7) 0))) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 . x9) (λ x9 . x9) = x5) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 x6 . ∀ x7 : (ι → (ι → ι) → ι) → ι → ι . x1 (λ x9 . x9) (λ x9 . 0) = Inj1 (Inj0 (x4 0 x6))) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι → ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ((ι → ι) → ι → ι) → ι → ι . x0 (λ x9 : (ι → ι) → ι . x6) 0 = x6) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ((ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x7 : ((ι → ι → ι) → ι → ι → ι) → ι . x0 (λ x9 : (ι → ι) → ι . setsum (x3 (λ x10 : (ι → ι) → ι → ι → ι → ι . x3 (λ x11 : (ι → ι) → ι → ι → ι → ι . x0 (λ x12 : (ι → ι) → ι . 0) 0) (λ x11 x12 . x12) (λ x11 : ι → ι . x2 (λ x12 . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι . 0) 0)) (λ x10 x11 . x1 (λ x12 . x3 (λ x13 : (ι → ι) → ι → ι → ι → ι . 0) (λ x13 x14 . 0) (λ x13 : ι → ι . 0)) (λ x12 . x10)) (λ x10 : ι → ι . x9 (λ x11 . x0 (λ x12 : (ι → ι) → ι . 0) 0))) (x3 (λ x10 : (ι → ι) → ι → ι → ι → ι . Inj1 (Inj0 0)) (λ x10 x11 . 0) (λ x10 : ι → ι . 0))) 0 = x6 (λ x9 x10 : ι → ι . λ x11 . setsum 0 (x3 (λ x12 : (ι → ι) → ι → ι → ι → ι . setsum (Inj0 0) (x2 (λ x13 . λ x14 : ((ι → ι) → ι) → (ι → ι) → ι . 0) 0)) (λ x12 x13 . Inj0 (setsum 0 0)) (λ x12 : ι → ι . 0)))) ⟶ False (proof)Theorem 50fbc.. : ∀ x0 : (ι → ι → (ι → ι) → (ι → ι) → ι) → ι → ((ι → ι) → ι) → ι . ∀ x1 : (ι → ι) → ι → (ι → ι → ι) → ι . ∀ x2 : (ι → (((ι → ι) → ι) → ι) → ι) → ι → ι . ∀ x3 : (ι → ι) → ι → (((ι → ι) → ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . (∀ x4 . ∀ x5 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι → ι . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 . x6 (Inj1 x9)) x7 (λ x9 : (ι → ι) → ι → ι . λ x10 . x7) (λ x9 : ι → ι . λ x10 . x10) = x6 x7) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → ι → ι → ι . x3 (λ x9 . x9) x6 (λ x9 : (ι → ι) → ι → ι . λ x10 . 0) (λ x9 : ι → ι . λ x10 . Inj0 (Inj1 (x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι . x0 (λ x13 x14 . λ x15 x16 : ι → ι . 0) 0 (λ x13 : ι → ι . 0)) 0))) = x6) ⟶ (∀ x4 x5 . ∀ x6 : (ι → (ι → ι) → ι → ι) → ι → (ι → ι) → ι → ι . ∀ x7 : ι → (ι → ι) → ι . x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . x7 (x7 (Inj1 (x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι . 0) 0)) (λ x11 . 0)) (λ x11 . 0)) (x1 (λ x9 . x6 (λ x10 . λ x11 : ι → ι . λ x12 . x3 (λ x13 . 0) (Inj1 0) (λ x13 : (ι → ι) → ι → ι . λ x14 . setsum 0 0) (λ x13 : ι → ι . λ x14 . x13 0)) (x0 (λ x10 x11 . λ x12 x13 : ι → ι . x12 0) 0 (λ x10 : ι → ι . x6 (λ x11 . λ x12 : ι → ι . λ x13 . 0) 0 (λ x11 . 0) 0)) (λ x10 . x9) (Inj0 x5)) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . setsum 0 (setsum 0 0)) 0) (λ x9 x10 . x9)) = setsum (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . x1 (λ x11 . setsum (x0 (λ x12 x13 . λ x14 x15 : ι → ι . 0) 0 (λ x12 : ι → ι . 0)) (x10 (λ x12 : ι → ι . 0))) (x1 (λ x11 . 0) (setsum 0 0) (λ x11 x12 . x3 (λ x13 . 0) 0 (λ x13 : (ι → ι) → ι → ι . λ x14 . 0) (λ x13 : ι → ι . λ x14 . 0))) (λ x11 x12 . x1 (λ x13 . x13) (x3 (λ x13 . 0) 0 (λ x13 : (ι → ι) → ι → ι . λ x14 . 0) (λ x13 : ι → ι . λ x14 . 0)) (λ x13 x14 . setsum 0 0))) 0) (Inj1 (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . 0) (setsum (setsum 0 0) (x1 (λ x9 . 0) 0 (λ x9 x10 . 0)))))) ⟶ (∀ x4 x5 . ∀ x6 : ι → (ι → ι → ι) → ι . ∀ x7 . x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . Inj1 0) (x3 (λ x9 . 0) (x3 (λ x9 . setsum (x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι . 0) 0) 0) 0 (λ x9 : (ι → ι) → ι → ι . λ x10 . x10) (λ x9 : ι → ι . λ x10 . setsum (x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι . 0) 0) (x3 (λ x11 . 0) 0 (λ x11 : (ι → ι) → ι → ι . λ x12 . 0) (λ x11 : ι → ι . λ x12 . 0)))) (λ x9 : (ι → ι) → ι → ι . λ x10 . 0) (λ x9 : ι → ι . λ x10 . 0)) = x3 (λ x9 . x1 (λ x10 . setsum (x1 (λ x11 . 0) (x0 (λ x11 x12 . λ x13 x14 : ι → ι . 0) 0 (λ x11 : ι → ι . 0)) (λ x11 x12 . setsum 0 0)) (x1 (λ x11 . 0) 0 (λ x11 x12 . Inj1 0))) (Inj1 0) (λ x10 x11 . x7)) (setsum (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . x1 (λ x11 . x7) (x1 (λ x11 . 0) 0 (λ x11 x12 . 0)) (λ x11 x12 . 0)) (x3 (λ x9 . setsum 0 0) 0 (λ x9 : (ι → ι) → ι → ι . λ x10 . x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι . 0) 0) (λ x9 : ι → ι . λ x10 . x7))) 0) (λ x9 : (ι → ι) → ι → ι . λ x10 . setsum (Inj1 (Inj1 x10)) (Inj1 x10)) (λ x9 : ι → ι . λ x10 . setsum (x0 (λ x11 x12 . λ x13 x14 : ι → ι . x13 0) (x3 (λ x11 . x3 (λ x12 . 0) 0 (λ x12 : (ι → ι) → ι → ι . λ x13 . 0) (λ x12 : ι → ι . λ x13 . 0)) (Inj0 0) (λ x11 : (ι → ι) → ι → ι . λ x12 . x0 (λ x13 x14 . λ x15 x16 : ι → ι . 0) 0 (λ x13 : ι → ι . 0)) (λ x11 : ι → ι . λ x12 . x0 (λ x13 x14 . λ x15 x16 : ι → ι . 0) 0 (λ x13 : ι → ι . 0))) (λ x11 : ι → ι . x1 (λ x12 . x11 0) 0 (λ x12 x13 . setsum 0 0))) (x6 (x6 0 (λ x11 x12 . x11)) (λ x11 x12 . x10)))) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → (ι → ι → ι) → ι → ι . ∀ x6 . ∀ x7 : ι → ι . x1 (λ x9 . x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι . 0) (x3 (λ x10 . x9) (x7 x9) (λ x10 : (ι → ι) → ι → ι . λ x11 . x7 (x2 (λ x12 . λ x13 : ((ι → ι) → ι) → ι . 0) 0)) (λ x10 : ι → ι . λ x11 . x11))) 0 (λ x9 x10 . 0) = x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . setsum (setsum (x3 (λ x11 . setsum 0 0) (x7 0) (λ x11 : (ι → ι) → ι → ι . λ x12 . 0) (λ x11 : ι → ι . λ x12 . x12)) 0) (Inj1 x9)) x6) ⟶ (∀ x4 : ι → ι . ∀ x5 : ((ι → ι → ι) → ι) → (ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι . x1 (λ x9 . Inj1 (x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι . x1 (λ x12 . 0) (x7 0) (λ x12 x13 . 0)) (x5 (λ x10 : ι → ι → ι . x10 0 0) (λ x10 . 0)))) 0 (λ x9 x10 . x10) = x4 (setsum (Inj0 x6) (x3 (λ x9 . x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι . 0) (x5 (λ x10 : ι → ι → ι . 0) (λ x10 . 0))) (x0 (λ x9 x10 . λ x11 x12 : ι → ι . x1 (λ x13 . 0) 0 (λ x13 x14 . 0)) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . 0) 0) (λ x9 : ι → ι . x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι . 0) 0)) (λ x9 : (ι → ι) → ι → ι . λ x10 . x3 (λ x11 . 0) 0 (λ x11 : (ι → ι) → ι → ι . λ x12 . x12) (λ x11 : ι → ι . λ x12 . setsum 0 0)) (λ x9 : ι → ι . λ x10 . Inj0 0)))) ⟶ (∀ x4 x5 : ι → ι → ι . ∀ x6 : (ι → ι → ι → ι) → ι → (ι → ι) → ι → ι . ∀ x7 : ι → ι → (ι → ι) → ι → ι . x0 (λ x9 x10 . λ x11 x12 : ι → ι . Inj0 (Inj0 0)) (setsum 0 (Inj1 (setsum 0 (Inj0 0)))) (λ x9 : ι → ι . 0) = x5 (x4 (x1 (λ x9 . setsum (x6 (λ x10 x11 x12 . 0) 0 (λ x10 . 0) 0) 0) 0 (λ x9 x10 . x1 (λ x11 . 0) (setsum 0 0) (λ x11 x12 . Inj0 0))) (x5 (x4 (x0 (λ x9 x10 . λ x11 x12 : ι → ι . 0) 0 (λ x9 : ι → ι . 0)) (x3 (λ x9 . 0) 0 (λ x9 : (ι → ι) → ι → ι . λ x10 . 0) (λ x9 : ι → ι . λ x10 . 0))) (x1 (λ x9 . setsum 0 0) 0 (λ x9 x10 . x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι . 0) 0)))) 0) ⟶ (∀ x4 . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x0 (λ x9 x10 . λ x11 x12 : ι → ι . x9) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . 0) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι . 0) (x0 (λ x11 x12 . λ x13 x14 : ι → ι . 0) 0 (λ x11 : ι → ι . 0))) (setsum 0 x4))) (λ x9 : ι → ι . x3 (λ x10 . setsum (x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι . 0) 0) (Inj1 (x0 (λ x11 x12 . λ x13 x14 : ι → ι . 0) 0 (λ x11 : ι → ι . 0)))) 0 (λ x10 : (ι → ι) → ι → ι . λ x11 . Inj1 (Inj0 (x1 (λ x12 . 0) 0 (λ x12 x13 . 0)))) (λ x10 : ι → ι . λ x11 . x2 (λ x12 . λ x13 : ((ι → ι) → ι) → ι . setsum (x1 (λ x14 . 0) 0 (λ x14 x15 . 0)) (Inj1 0)) (x10 0))) = x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι . setsum 0 (x10 (λ x11 : ι → ι . x10 (λ x12 : ι → ι . setsum 0 0)))) (x3 (λ x9 . setsum (setsum (Inj0 0) (x1 (λ x10 . 0) 0 (λ x10 x11 . 0))) (x1 (λ x10 . x6) 0 (λ x10 x11 . x1 (λ x12 . 0) 0 (λ x12 x13 . 0)))) (x0 (λ x9 x10 . λ x11 x12 : ι → ι . 0) (Inj1 0) (λ x9 : ι → ι . x3 (λ x10 . x1 (λ x11 . 0) 0 (λ x11 x12 . 0)) 0 (λ x10 : (ι → ι) → ι → ι . λ x11 . x2 (λ x12 . λ x13 : ((ι → ι) → ι) → ι . 0) 0) (λ x10 : ι → ι . λ x11 . Inj0 0))) (λ x9 : (ι → ι) → ι → ι . λ x10 . 0) (λ x9 : ι → ι . λ x10 . x1 (λ x11 . x2 (λ x12 . λ x13 : ((ι → ι) → ι) → ι . setsum 0 0) 0) 0 (λ x11 x12 . x2 (λ x13 . λ x14 : ((ι → ι) → ι) → ι . 0) (x9 0))))) ⟶ False (proof)Theorem 79b32.. : ∀ x0 : (ι → ι → ι → ι) → ι → ι → ι → ι → ι → ι . ∀ x1 : (((((ι → ι) → ι) → ι) → (ι → ι → ι) → ι) → (ι → ι) → (ι → ι → ι) → ι) → (ι → ι) → ι . ∀ x2 : (ι → ((ι → ι) → ι) → ι) → ι → ι . ∀ x3 : (ι → ι → ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι → ι . (∀ x4 x5 x6 . ∀ x7 : ι → ι → ι . x3 (λ x9 x10 x11 . λ x12 : ι → ι . x3 (λ x13 x14 x15 . λ x16 : ι → ι . x14) (λ x13 : ι → ι . λ x14 . Inj1 0) x10) (λ x9 : ι → ι . λ x10 . 0) x6 = setsum (Inj0 (x3 (λ x9 x10 x11 . λ x12 : ι → ι . 0) (λ x9 : ι → ι . λ x10 . x3 (λ x11 x12 x13 . λ x14 : ι → ι . Inj0 0) (λ x11 : ι → ι . λ x12 . x10) (x1 (λ x11 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x12 : ι → ι . λ x13 : ι → ι → ι . 0) (λ x11 . 0))) x4)) x4) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 x7 : ι → ι . x3 (λ x9 x10 x11 . λ x12 : ι → ι . x9) (λ x9 : ι → ι . λ x10 . x9 (Inj1 (setsum (x2 (λ x11 . λ x12 : (ι → ι) → ι . 0) 0) (x6 0)))) x4 = x4) ⟶ (∀ x4 x5 : ι → ι . ∀ x6 . ∀ x7 : (((ι → ι) → ι → ι) → ι) → ι . x2 (λ x9 . λ x10 : (ι → ι) → ι . x3 (λ x11 x12 x13 . λ x14 : ι → ι . x14 (x2 (λ x15 . λ x16 : (ι → ι) → ι . setsum 0 0) (setsum 0 0))) (λ x11 : ι → ι . x2 (λ x12 . λ x13 : (ι → ι) → ι . x3 (λ x14 x15 x16 . λ x17 : ι → ι . x17 0) (λ x14 : ι → ι . λ x15 . 0) x12)) 0) (Inj0 (setsum (x4 (Inj0 0)) (x2 (λ x9 . λ x10 : (ι → ι) → ι . 0) (Inj0 0)))) = Inj1 (x5 (x0 (λ x9 x10 x11 . setsum (x2 (λ x12 . λ x13 : (ι → ι) → ι . 0) 0) (x1 (λ x12 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x13 : ι → ι . λ x14 : ι → ι → ι . 0) (λ x12 . 0))) 0 (x2 (λ x9 . λ x10 : (ι → ι) → ι . Inj0 0) 0) (x4 0) (x5 (x2 (λ x9 . λ x10 : (ι → ι) → ι . 0) 0)) 0))) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 . λ x10 : (ι → ι) → ι . 0) (x1 (λ x9 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι . 0) (λ x9 . 0)) = setsum x7 x5) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι . x9 (λ x12 : (ι → ι) → ι . Inj1 (x1 (λ x13 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x14 : ι → ι . λ x15 : ι → ι → ι . 0) (λ x13 . 0))) (λ x12 . setsum (x2 (λ x13 . λ x14 : (ι → ι) → ι . x3 (λ x15 x16 x17 . λ x18 : ι → ι . 0) (λ x15 : ι → ι . λ x16 . 0) 0) (x11 0 0)))) (λ x9 . 0) = x6 (x1 (λ x9 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι . 0) (λ x9 . setsum (x5 (λ x10 . x6 0)) 0))) ⟶ (∀ x4 x5 x6 . ∀ x7 : (ι → ι → ι → ι) → ι → ι . x1 (λ x9 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι . Inj1 0) (λ x9 . 0) = x7 (λ x9 x10 x11 . 0) 0) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι . x0 (λ x9 x10 x11 . x11) 0 (Inj0 (x5 (λ x9 : (ι → ι) → ι → ι . λ x10 x11 . x9 (λ x12 . x1 (λ x13 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x14 : ι → ι . λ x15 : ι → ι → ι . 0) (λ x13 . 0)) 0))) 0 (x1 (λ x9 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι . Inj0 (x11 (x0 (λ x12 x13 x14 . 0) 0 0 0 0 0) (Inj1 0))) (λ x9 . 0)) (x6 (x1 (λ x9 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι . x10 0) (λ x9 . 0))) = Inj0 x4) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι . ∀ x5 x6 x7 . x0 (λ x9 x10 x11 . x3 (λ x12 x13 x14 . λ x15 : ι → ι . 0) (λ x12 : ι → ι . λ x13 . x2 (λ x14 . λ x15 : (ι → ι) → ι . Inj1 x13) 0) 0) x7 (Inj0 (Inj0 (x1 (λ x9 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι . x7) (λ x9 . x2 (λ x10 . λ x11 : (ι → ι) → ι . 0) 0)))) (x0 (λ x9 x10 x11 . x7) 0 (x2 (λ x9 . λ x10 : (ι → ι) → ι . Inj1 (x1 (λ x11 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x12 : ι → ι . λ x13 : ι → ι → ι . 0) (λ x11 . 0))) (x4 0 (λ x9 : ι → ι . λ x10 . 0))) (x3 (λ x9 x10 x11 . λ x12 : ι → ι . x11) (λ x9 : ι → ι . λ x10 . 0) (setsum 0 (x2 (λ x9 . λ x10 : (ι → ι) → ι . 0) 0))) (Inj1 (x3 (λ x9 x10 x11 . λ x12 : ι → ι . Inj0 0) (λ x9 : ι → ι . λ x10 . 0) 0)) (Inj0 (Inj0 (x0 (λ x9 x10 x11 . 0) 0 0 0 0 0)))) x7 0 = x3 (λ x9 x10 x11 . λ x12 : ι → ι . Inj0 (setsum x11 0)) (λ x9 : ι → ι . λ x10 . x9 (setsum 0 (x9 (setsum 0 0)))) (x0 (λ x9 x10 x11 . 0) 0 (x4 x6 (λ x9 : ι → ι . λ x10 . 0)) (x0 (λ x9 x10 x11 . x0 (λ x12 x13 x14 . Inj1 0) 0 x7 (x2 (λ x12 . λ x13 : (ι → ι) → ι . 0) 0) (setsum 0 0) (x2 (λ x12 . λ x13 : (ι → ι) → ι . 0) 0)) x7 x7 0 0 (Inj1 0)) (setsum (x0 (λ x9 x10 x11 . x3 (λ x12 x13 x14 . λ x15 : ι → ι . 0) (λ x12 : ι → ι . λ x13 . 0) 0) (setsum 0 0) (x3 (λ x9 x10 x11 . λ x12 : ι → ι . 0) (λ x9 : ι → ι . λ x10 . 0) 0) (Inj0 0) 0 (x0 (λ x9 x10 x11 . 0) 0 0 0 0 0)) (x3 (λ x9 x10 x11 . λ x12 : ι → ι . x2 (λ x13 . λ x14 : (ι → ι) → ι . 0) 0) (λ x9 : ι → ι . λ x10 . setsum 0 0) (Inj1 0))) (x3 (λ x9 x10 x11 . λ x12 : ι → ι . x1 (λ x13 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . λ x14 : ι → ι . λ x15 : ι → ι → ι . 0) (λ x13 . x10)) (λ x9 : ι → ι . λ x10 . 0) 0))) ⟶ False (proof)Theorem 8a079.. : ∀ x0 : ((ι → ι) → (((ι → ι) → ι) → ι) → ι → ι → ι) → (((ι → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι) → ι . ∀ x1 : (((ι → ι) → ι → ι) → ι → (ι → ι) → (ι → ι) → ι → ι) → ((((ι → ι) → ι → ι) → ι → ι → ι) → ι) → ι . ∀ x2 : (ι → ι) → ι → ι → ι → ι . ∀ x3 : (((ι → ι) → ι) → (ι → ι) → ι → ι → ι → ι) → ι → ι . (∀ x4 : (((ι → ι) → ι) → ι → ι → ι) → ι . ∀ x5 : (ι → (ι → ι) → ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → (ι → ι) → ι → ι) → ι . x3 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 x12 x13 . 0) 0 = x5 (λ x9 . λ x10 : ι → ι . λ x11 . Inj0 (setsum x9 (setsum (Inj0 0) (Inj1 0))))) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 x6 x7 . x3 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 x12 x13 . setsum (x2 (λ x14 . 0) 0 x11 0) (Inj1 (x3 (λ x14 : (ι → ι) → ι . λ x15 : ι → ι . λ x16 x17 x18 . x15 0) 0))) (Inj0 x6) = setsum (x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 x12 . x1 (λ x13 : (ι → ι) → ι → ι . λ x14 . λ x15 x16 : ι → ι . λ x17 . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . x11)) (λ x9 x10 : (ι → ι) → ι . λ x11 : ι → ι . setsum (setsum (setsum 0 0) (x3 (λ x12 : (ι → ι) → ι . λ x13 : ι → ι . λ x14 x15 x16 . 0) 0)) 0)) x5) ⟶ (∀ x4 : ι → ι → (ι → ι) → ι . ∀ x5 : (ι → (ι → ι) → ι) → ι . ∀ x6 : (ι → ι → ι → ι) → ι → ι . ∀ x7 . x2 (λ x9 . x1 (λ x10 : (ι → ι) → ι → ι . λ x11 . λ x12 x13 : ι → ι . λ x14 . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . x1 (λ x11 : (ι → ι) → ι → ι . λ x12 . λ x13 x14 : ι → ι . λ x15 . x14 (setsum 0 0)) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum (x3 (λ x12 : (ι → ι) → ι . λ x13 : ι → ι . λ x14 x15 x16 . 0) 0) (x2 (λ x12 . 0) 0 0 0)))) (x4 0 (setsum (x6 (λ x9 x10 x11 . x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 x15 . 0) (λ x12 x13 : (ι → ι) → ι . λ x14 : ι → ι . 0)) (Inj0 0)) x7) (λ x9 . x7)) 0 (x3 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 x12 x13 . x0 (λ x14 : ι → ι . λ x15 : ((ι → ι) → ι) → ι . λ x16 x17 . x16) (λ x14 x15 : (ι → ι) → ι . λ x16 : ι → ι . x2 (λ x17 . 0) (setsum 0 0) 0 0)) x7) = x1 (λ x9 : (ι → ι) → ι → ι . λ x10 . λ x11 x12 : ι → ι . λ x13 . x2 (λ x14 . 0) 0 0 (x0 (λ x14 : ι → ι . λ x15 : ((ι → ι) → ι) → ι . λ x16 x17 . setsum 0 (setsum 0 0)) (λ x14 x15 : (ι → ι) → ι . λ x16 : ι → ι . x1 (λ x17 : (ι → ι) → ι → ι . λ x18 . λ x19 x20 : ι → ι . λ x21 . 0) (λ x17 : ((ι → ι) → ι → ι) → ι → ι → ι . x2 (λ x18 . 0) 0 0 0)))) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . x6 (λ x10 x11 x12 . setsum (setsum (x2 (λ x13 . 0) 0 0 0) 0) (x1 (λ x13 : (ι → ι) → ι → ι . λ x14 . λ x15 x16 : ι → ι . λ x17 . x1 (λ x18 : (ι → ι) → ι → ι . λ x19 . λ x20 x21 : ι → ι . λ x22 . 0) (λ x18 : ((ι → ι) → ι → ι) → ι → ι → ι . 0)) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum 0 0))) (x9 (λ x10 : ι → ι . λ x11 . Inj1 (x3 (λ x12 : (ι → ι) → ι . λ x13 : ι → ι . λ x14 x15 x16 . 0) 0)) 0 (Inj0 0)))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → ι → (ι → ι) → ι . ∀ x7 : ι → (ι → ι) → ι . x2 (λ x9 . x9) 0 (x6 (Inj0 0) x4 (λ x9 . x5 (Inj1 0))) 0 = setsum 0 (x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 x12 . x1 (λ x13 : (ι → ι) → ι → ι . λ x14 . λ x15 x16 : ι → ι . λ x17 . x0 (λ x18 : ι → ι . λ x19 : ((ι → ι) → ι) → ι . λ x20 x21 . x18 0) (λ x18 x19 : (ι → ι) → ι . λ x20 : ι → ι . x1 (λ x21 : (ι → ι) → ι → ι . λ x22 . λ x23 x24 : ι → ι . λ x25 . 0) (λ x21 : ((ι → ι) → ι → ι) → ι → ι → ι . 0))) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . 0)) (λ x9 x10 : (ι → ι) → ι . λ x11 : ι → ι . x3 (λ x12 : (ι → ι) → ι . λ x13 : ι → ι . λ x14 x15 x16 . 0) (x1 (λ x12 : (ι → ι) → ι → ι . λ x13 . λ x14 x15 : ι → ι . λ x16 . x14 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . Inj1 0))))) ⟶ (∀ x4 x5 : ι → ι → ι . ∀ x6 : ι → ((ι → ι) → ι) → (ι → ι) → ι . ∀ x7 : ι → ι . x1 (λ x9 : (ι → ι) → ι → ι . λ x10 . λ x11 x12 : ι → ι . setsum (x2 (λ x13 . Inj1 0) (setsum x10 (x1 (λ x13 : (ι → ι) → ι → ι . λ x14 . λ x15 x16 : ι → ι . λ x17 . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . 0))) (x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 x16 . x2 (λ x17 . 0) 0 0 0) (λ x13 x14 : (ι → ι) → ι . λ x15 : ι → ι . Inj0 0)) 0)) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum (x9 (λ x10 : ι → ι . λ x11 . Inj0 (Inj1 0)) (x9 (λ x10 : ι → ι . λ x11 . x7 0) (x5 0 0) 0) (x1 (λ x10 : (ι → ι) → ι → ι . λ x11 . λ x12 x13 : ι → ι . λ x14 . setsum 0 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . x10 (λ x11 : ι → ι . λ x12 . 0) 0 0))) (setsum 0 0)) = x7 (setsum (setsum 0 (x6 (setsum 0 0) (λ x9 : ι → ι . x9 0) (λ x9 . x0 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 x13 . 0) (λ x10 x11 : (ι → ι) → ι . λ x12 : ι → ι . 0)))) (x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 x12 . Inj1 x11) (λ x9 x10 : (ι → ι) → ι . λ x11 : ι → ι . 0)))) ⟶ (∀ x4 x5 . ∀ x6 : ((ι → ι → ι) → ι → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . ∀ x7 . x1 (λ x9 : (ι → ι) → ι → ι . λ x10 . λ x11 x12 : ι → ι . λ x13 . x10) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum (Inj1 (x2 (λ x10 . 0) (setsum 0 0) 0 0)) (Inj0 (x1 (λ x10 : (ι → ι) → ι → ι . λ x11 . λ x12 x13 : ι → ι . λ x14 . x1 (λ x15 : (ι → ι) → ι → ι . λ x16 . λ x17 x18 : ι → ι . λ x19 . 0) (λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . 0)) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . x9 (λ x11 : ι → ι . λ x12 . 0) 0 0)))) = setsum (x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 x12 . x12) (λ x9 x10 : (ι → ι) → ι . λ x11 : ι → ι . x1 (λ x12 : (ι → ι) → ι → ι . λ x13 . λ x14 x15 : ι → ι . λ x16 . x13) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . x1 (λ x13 : (ι → ι) → ι → ι . λ x14 . λ x15 x16 : ι → ι . λ x17 . x17) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . 0)))) 0) ⟶ (∀ x4 x5 x6 . ∀ x7 : (((ι → ι) → ι) → ι → ι → ι) → (ι → ι) → (ι → ι) → ι . x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 x12 . x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 x16 . x13 (x13 0)) (λ x13 x14 : (ι → ι) → ι . λ x15 : ι → ι . x2 (λ x16 . x1 (λ x17 : (ι → ι) → ι → ι . λ x18 . λ x19 x20 : ι → ι . λ x21 . 0) (λ x17 : ((ι → ι) → ι → ι) → ι → ι → ι . x3 (λ x18 : (ι → ι) → ι . λ x19 : ι → ι . λ x20 x21 x22 . 0) 0)) x12 0 (x0 (λ x16 : ι → ι . λ x17 : ((ι → ι) → ι) → ι . λ x18 x19 . x17 (λ x20 : ι → ι . 0)) (λ x16 x17 : (ι → ι) → ι . λ x18 : ι → ι . setsum 0 0)))) (λ x9 x10 : (ι → ι) → ι . λ x11 : ι → ι . x1 (λ x12 : (ι → ι) → ι → ι . λ x13 . λ x14 x15 : ι → ι . λ x16 . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . Inj1 (x12 (λ x13 : ι → ι . λ x14 . 0) (x3 (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . λ x15 x16 x17 . 0) 0) (x9 (λ x13 . 0))))) = Inj1 0) ⟶ (∀ x4 . ∀ x5 : ((ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . ∀ x6 x7 . x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 x12 . x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 x16 . 0) (λ x13 x14 : (ι → ι) → ι . λ x15 : ι → ι . 0)) (λ x9 x10 : (ι → ι) → ι . λ x11 : ι → ι . Inj1 (Inj1 (setsum (Inj0 0) 0))) = setsum (Inj1 (setsum x6 (Inj1 (x3 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 x12 x13 . 0) 0)))) (x3 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 x12 x13 . setsum (x2 (λ x14 . x12) (x3 (λ x14 : (ι → ι) → ι . λ x15 : ι → ι . λ x16 x17 x18 . 0) 0) 0 (setsum 0 0)) x12) (x3 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 x12 x13 . x12) (setsum 0 0)))) ⟶ False (proof)Theorem 04573.. : ∀ x0 : ((ι → ι) → (((ι → ι) → ι → ι) → ι → ι) → ι) → ι → ((ι → ι) → ι) → ι . ∀ x1 : (((((ι → ι) → ι) → ι) → ι) → ι) → ι → (ι → ι) → (ι → ι → ι) → (ι → ι) → ι → ι . ∀ x2 : (ι → ι) → ((ι → ι → ι) → ι) → ι . ∀ x3 : ((ι → ι) → (ι → ι → ι → ι) → ι) → ((((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι → ι → ι) → ι . (∀ x4 . ∀ x5 x6 : ι → ι . ∀ x7 : (ι → ι) → ι . x3 (λ x9 : ι → ι . λ x10 : ι → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . x12) = setsum 0 (Inj0 (x2 (λ x9 . x9) (λ x9 : ι → ι → ι . setsum (x7 (λ x10 . 0)) (setsum 0 0))))) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι → ι . ∀ x5 x6 . ∀ x7 : (ι → ι) → ι . x3 (λ x9 : ι → ι . λ x10 : ι → ι → ι → ι . x9 (x10 (x10 (x2 (λ x11 . 0) (λ x11 : ι → ι → ι . 0)) (x0 (λ x11 : ι → ι . λ x12 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x11 : ι → ι . 0)) 0) 0 0)) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . x1 (λ x13 : (((ι → ι) → ι) → ι) → ι . x11) (x2 (λ x13 . setsum x11 (setsum 0 0)) (λ x13 : ι → ι → ι . 0)) (λ x13 . setsum (setsum (x1 (λ x14 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x14 . 0) (λ x14 x15 . 0) (λ x14 . 0) 0) 0) (setsum (setsum 0 0) x10)) (λ x13 x14 . setsum (Inj0 0) (setsum (x0 (λ x15 : ι → ι . λ x16 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x15 : ι → ι . 0)) (Inj0 0))) (λ x13 . x13) 0) = x1 (λ x9 : (((ι → ι) → ι) → ι) → ι . x6) (x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . 0) (x3 (λ x9 : ι → ι . λ x10 : ι → ι → ι → ι . x3 (λ x11 : ι → ι . λ x12 : ι → ι → ι → ι . x3 (λ x13 : ι → ι . λ x14 : ι → ι → ι → ι . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x14 x15 x16 . 0)) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 . setsum 0 0)) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . x12)) (λ x9 : ι → ι . x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . x9 (x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x12 : ι → ι . 0))) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . Inj1 (x1 (λ x14 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x14 . 0) (λ x14 x15 . 0) (λ x14 . 0) 0)))) (λ x9 . x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . x7 (λ x12 . x12)) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . x2 (λ x14 . 0) (λ x14 : ι → ι → ι . x14 x11 (x1 (λ x15 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x15 . 0) (λ x15 x16 . 0) (λ x15 . 0) 0)))) (λ x9 x10 . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . Inj1 (Inj1 (x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x12 : ι → ι . 0)))) (x7 (λ x11 . x1 (λ x12 : (((ι → ι) → ι) → ι) → ι . setsum 0 0) x11 (λ x12 . setsum 0 0) (λ x12 x13 . x2 (λ x14 . 0) (λ x14 : ι → ι → ι . 0)) (λ x12 . Inj1 0) (x1 (λ x12 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x12 . 0) (λ x12 x13 . 0) (λ x12 . 0) 0))) (λ x11 . 0) (λ x11 x12 . 0) (λ x11 . x9) (x0 (λ x11 : ι → ι . λ x12 : ((ι → ι) → ι → ι) → ι → ι . Inj1 (x1 (λ x13 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x13 . 0) (λ x13 x14 . 0) (λ x13 . 0) 0)) 0 (λ x11 : ι → ι . x10))) (λ x9 . Inj1 (x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . x10 (λ x11 : (ι → ι) → ι . x10 (λ x12 : (ι → ι) → ι . 0))) (x0 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι → ι) → ι → ι . x3 (λ x12 : ι → ι . λ x13 : ι → ι → ι → ι . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 . 0)) 0 (λ x10 : ι → ι . setsum 0 0)) (λ x10 . Inj0 (setsum 0 0)) (λ x10 x11 . x7 (λ x12 . x12)) (λ x10 . x10) (x7 (λ x10 . setsum 0 0)))) (x7 Inj0)) ⟶ (∀ x4 : ((ι → ι) → ι → ι) → ι → (ι → ι) → ι → ι . ∀ x5 : ι → ι → (ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι → ι . x2 (λ x9 . x5 (Inj1 0) (x5 0 (x7 (λ x10 . 0) (x7 (λ x10 . 0) 0)) (λ x10 . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . x10) 0 (λ x11 . x9) (λ x11 x12 . x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x13 : ι → ι . 0)) (λ x11 . Inj1 0) (x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x11 . 0) (λ x11 x12 . 0) (λ x11 . 0) 0))) (λ x10 . x2 Inj0 (λ x11 : ι → ι → ι . x1 (λ x12 : (((ι → ι) → ι) → ι) → ι . x1 (λ x13 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x13 . 0) (λ x13 x14 . 0) (λ x13 . 0) 0) (Inj1 0) (λ x12 . Inj1 0) (λ x12 x13 . x10) (λ x12 . 0) (x2 (λ x12 . 0) (λ x12 : ι → ι → ι . 0))))) (λ x9 : ι → ι → ι . x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . 0) (Inj1 0) (λ x10 . x10) (λ x10 x11 . x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . x3 (λ x14 : ι → ι . λ x15 : ι → ι → ι → ι . x2 (λ x16 . 0) (λ x16 : ι → ι → ι . 0)) (λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x15 x16 x17 . x16)) (setsum x10 x10) (λ x12 : ι → ι . x12 0)) (λ x10 . setsum x10 (setsum (setsum 0 0) (x2 (λ x11 . 0) (λ x11 : ι → ι → ι . 0)))) (x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . 0) (x7 (λ x10 . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x11 . 0) (λ x11 x12 . 0) (λ x11 . 0) 0) (x5 0 0 (λ x10 . 0))) (λ x10 . Inj0 (x9 0 0)) (λ x10 x11 . x10) (λ x10 . 0) (x7 (λ x10 . Inj1 0) (x2 (λ x10 . 0) (λ x10 : ι → ι → ι . 0))))) = x5 (setsum (x2 (λ x9 . 0) (λ x9 : ι → ι → ι . x7 (λ x10 . x3 (λ x11 : ι → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 . 0)) (x7 (λ x10 . 0) 0))) (x5 0 (setsum x6 (x3 (λ x9 : ι → ι . λ x10 : ι → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . 0))) (λ x9 . 0))) (x7 (λ x9 . setsum 0 0) (Inj1 (x3 (λ x9 : ι → ι . λ x10 : ι → ι → ι → ι . x7 (λ x11 . 0) 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . 0)))) (λ x9 . x9)) ⟶ (∀ x4 . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 x7 . x2 (λ x9 . x2 (λ x10 . x10) (λ x10 : ι → ι → ι . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . Inj0 (x11 (λ x12 : (ι → ι) → ι . 0))) 0 (λ x11 . x7) (λ x11 x12 . x10 (x10 0 0) (setsum 0 0)) (λ x11 . Inj0 (x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x12 : ι → ι . 0))) (x10 0 (setsum 0 0)))) (λ x9 : ι → ι → ι . 0) = x2 (λ x9 . x0 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι → ι) → ι → ι . setsum (x11 (λ x12 : ι → ι . λ x13 . x0 (λ x14 : ι → ι . λ x15 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x14 : ι → ι . 0)) 0) (Inj0 (setsum 0 0))) 0 (λ x10 : ι → ι . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . x12 0) (Inj1 0) (λ x12 : ι → ι . x12 0)) x9 (λ x11 . x1 (λ x12 : (((ι → ι) → ι) → ι) → ι . setsum 0 0) (setsum 0 0) (λ x12 . 0) (λ x12 x13 . x2 (λ x14 . 0) (λ x14 : ι → ι → ι . 0)) (λ x12 . x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x13 : ι → ι . 0)) 0) (λ x11 x12 . 0) (λ x11 . x2 (λ x12 . x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x13 : ι → ι . 0)) (λ x12 : ι → ι → ι . setsum 0 0)) (x2 (λ x11 . x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x12 : ι → ι . 0)) (λ x11 : ι → ι → ι . x9)))) (λ x9 : ι → ι → ι . Inj1 0)) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι) → ι → ι → ι . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 : (((ι → ι) → ι) → ι) → ι . x5 (λ x10 : (ι → ι) → ι . Inj0 (Inj0 0)) (Inj0 (Inj1 (x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x10 . 0) (λ x10 x11 . 0) (λ x10 . 0) 0))) (Inj0 0)) (x5 (λ x9 : (ι → ι) → ι . x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . 0)) (setsum 0 0) (Inj0 (x5 (λ x9 : (ι → ι) → ι . setsum 0 0) (Inj0 0) 0))) (λ x9 . Inj0 0) (λ x9 x10 . x7) (λ x9 . x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . x9) x9 (λ x10 . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . setsum (x3 (λ x12 : ι → ι . λ x13 : ι → ι → ι → ι . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 . 0)) (x2 (λ x12 . 0) (λ x12 : ι → ι → ι . 0))) 0 (λ x11 . x2 (λ x12 . 0) (λ x12 : ι → ι → ι . Inj0 0)) (λ x11 x12 . setsum x10 (x1 (λ x13 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x13 . 0) (λ x13 x14 . 0) (λ x13 . 0) 0)) (λ x11 . setsum (Inj1 0) 0) x10) (λ x10 x11 . x9) (λ x10 . 0) (Inj1 (setsum (x2 (λ x10 . 0) (λ x10 : ι → ι → ι . 0)) 0))) (Inj1 (x6 x7)) = setsum (x1 (λ x9 : (((ι → ι) → ι) → ι) → ι . x5 (λ x10 : (ι → ι) → ι . setsum (x9 (λ x11 : (ι → ι) → ι . 0)) 0) (setsum (setsum 0 0) (x0 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x10 : ι → ι . 0))) (x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . setsum 0 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . x12))) 0 (λ x9 . x6 (x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . x3 (λ x11 : ι → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 . 0)) (x2 (λ x10 . 0) (λ x10 : ι → ι → ι . 0)) (λ x10 . x6 0) (λ x10 x11 . x1 (λ x12 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x12 . 0) (λ x12 x13 . 0) (λ x12 . 0) 0) (λ x10 . x0 (λ x11 : ι → ι . λ x12 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x11 : ι → ι . 0)) (x2 (λ x10 . 0) (λ x10 : ι → ι → ι . 0)))) (λ x9 x10 . x9) (λ x9 . Inj1 0) (setsum (x6 (x6 0)) (setsum x7 (Inj0 0)))) (setsum 0 0)) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι) → ι → ι . ∀ x6 : (((ι → ι) → ι → ι) → ι) → ι → ι → ι . ∀ x7 : (((ι → ι) → ι → ι) → ι → ι) → (ι → ι) → ι . x1 (λ x9 : (((ι → ι) → ι) → ι) → ι . x7 (λ x10 : (ι → ι) → ι → ι . λ x11 . setsum (setsum (x1 (λ x12 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x12 . 0) (λ x12 x13 . 0) (λ x12 . 0) 0) (x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x12 : ι → ι . 0))) (x7 (λ x12 : (ι → ι) → ι → ι . λ x13 . Inj1 0) (λ x12 . x9 (λ x13 : (ι → ι) → ι . 0)))) (λ x10 . x9 (λ x11 : (ι → ι) → ι . x9 (λ x12 : (ι → ι) → ι . 0)))) (x3 (λ x9 : ι → ι . λ x10 : ι → ι → ι → ι . x9 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . setsum (x1 (λ x13 : (((ι → ι) → ι) → ι) → ι . 0) (x1 (λ x13 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x13 . 0) (λ x13 x14 . 0) (λ x13 . 0) 0) (λ x13 . x13) (λ x13 x14 . setsum 0 0) (λ x13 . 0) 0) (x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι → ι) → ι → ι . setsum 0 0) (setsum 0 0) (λ x13 : ι → ι . x1 (λ x14 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x14 . 0) (λ x14 x15 . 0) (λ x14 . 0) 0)))) (λ x9 . x9) (λ x9 x10 . x10) (λ x9 . x5 (λ x10 x11 . Inj1 (x7 (λ x12 : (ι → ι) → ι → ι . λ x13 . x3 (λ x14 : ι → ι . λ x15 : ι → ι → ι → ι . 0) (λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x15 x16 x17 . 0)) (λ x12 . x0 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x13 : ι → ι . 0)))) (setsum 0 (x6 (λ x10 : (ι → ι) → ι → ι . 0) (x0 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x10 : ι → ι . 0)) 0))) (Inj1 0) = x5 (λ x9 x10 . setsum (Inj1 (setsum (x7 (λ x11 : (ι → ι) → ι → ι . λ x12 . 0) (λ x11 . 0)) (setsum 0 0))) (Inj1 x10)) (x5 (λ x9 x10 . Inj0 (x7 (λ x11 : (ι → ι) → ι → ι . λ x12 . setsum 0 0) (λ x11 . x1 (λ x12 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x12 . 0) (λ x12 x13 . 0) (λ x12 . 0) 0))) 0)) ⟶ (∀ x4 x5 x6 . ∀ x7 : (ι → ι → ι) → ι → ι . x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . Inj0 0) (setsum 0 0) (λ x9 : ι → ι . x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . x11 (λ x12 : (ι → ι) → ι . x9 0)) (x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x12 : ι → ι . 0)) (x10 (λ x11 : (ι → ι) → ι . 0)) (λ x11 . 0) (λ x11 x12 . 0) (λ x11 . Inj0 0) (x2 (λ x11 . 0) (λ x11 : ι → ι → ι . 0))) (λ x11 . setsum (x9 0) 0) (λ x11 x12 . x11) (λ x11 . 0) 0) 0 (λ x10 . x7 (λ x11 x12 . setsum 0 0) (x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . x2 (λ x12 . 0) (λ x12 : ι → ι → ι . 0)) (Inj0 0) (λ x11 . setsum 0 0) (λ x11 x12 . x12) (λ x11 . x2 (λ x12 . 0) (λ x12 : ι → ι → ι . 0)) x10)) (λ x10 x11 . 0) (λ x10 . x7 (λ x11 x12 . 0) (Inj1 (x3 (λ x11 : ι → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 . 0)))) (x9 (x7 (λ x10 x11 . 0) 0))) = x1 (λ x9 : (((ι → ι) → ι) → ι) → ι . setsum (x2 (λ x10 . 0) (λ x10 : ι → ι → ι . x7 (λ x11 x12 . x12) (x1 (λ x11 : (((ι → ι) → ι) → ι) → ι . 0) 0 (λ x11 . 0) (λ x11 x12 . 0) (λ x11 . 0) 0))) (setsum x6 (x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . setsum 0 0)))) (x7 (λ x9 x10 . x7 (λ x11 x12 . 0) (x3 (λ x11 : ι → ι . λ x12 : ι → ι → ι → ι . x9) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 . x3 (λ x15 : ι → ι . λ x16 : ι → ι → ι → ι . 0) (λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x16 x17 x18 . 0)))) 0) (λ x9 . Inj1 (x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . Inj0 0) (x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . Inj0 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . 0)) (λ x10 . x3 (λ x11 : ι → ι . λ x12 : ι → ι → ι → ι . Inj0 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 . 0)) (λ x10 x11 . setsum x10 x9) (λ x10 . setsum 0 (x0 (λ x11 : ι → ι . λ x12 : ((ι → ι) → ι → ι) → ι → ι . 0) 0 (λ x11 : ι → ι . 0))) (x1 (λ x10 : (((ι → ι) → ι) → ι) → ι . Inj0 0) (setsum 0 0) (λ x10 . setsum 0 0) (λ x10 x11 . 0) (λ x10 . 0) (x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . 0))))) (λ x9 x10 . setsum (setsum (Inj0 (x7 (λ x11 x12 . 0) 0)) 0) (Inj1 x6)) (λ x9 . x7 (λ x10 x11 . x3 (λ x12 : ι → ι . λ x13 : ι → ι → ι → ι . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 . x14)) (x0 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι → ι) → ι → ι . x7 (λ x12 x13 . 0) (Inj0 0)) x5 (λ x10 : ι → ι . x2 (λ x11 . x11) (λ x11 : ι → ι → ι . x9)))) x4) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . x10 (λ x11 : ι → ι . λ x12 . Inj0 (setsum x12 0)) (Inj0 0)) 0 (λ x9 : ι → ι . setsum 0 (x3 (λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . x0 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . x11 0 0 0) (x9 0) (λ x12 : ι → ι . x10 0)) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 . 0))) = x4 (x0 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . x6) (Inj1 (setsum (x4 0 (λ x9 : ι → ι . λ x10 . 0)) (Inj1 0))) (λ x9 : ι → ι . x2 (λ x10 . 0) (λ x10 : ι → ι → ι . 0))) (λ x9 : ι → ι . λ x10 . x0 (λ x11 : ι → ι . λ x12 : ((ι → ι) → ι → ι) → ι → ι . x9 x10) 0 (λ x11 : ι → ι . x11 0))) ⟶ False (proof)Theorem c4af8.. : ∀ x0 : ((ι → ι) → ι) → ((((ι → ι) → ι → ι) → ι → ι) → ι → (ι → ι) → ι → ι) → (((ι → ι) → ι) → ι → ι → ι) → ι . ∀ x1 : ((ι → ι → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x2 : ((ι → ι) → ι) → (ι → ((ι → ι) → ι → ι) → ι → ι) → (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι → ι . ∀ x3 : ((ι → ι) → (ι → (ι → ι) → ι → ι) → ι → ι) → ((ι → ι) → ι) → ι . (∀ x4 . ∀ x5 : ((ι → ι) → ι) → ι → ι → ι → ι . ∀ x6 : ι → ι → ι . ∀ x7 : ι → ι . x3 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . 0) (λ x9 : ι → ι . 0) = setsum (x2 (λ x9 : ι → ι . setsum (Inj1 (x1 (λ x10 : ι → ι → ι . 0) (λ x10 : ι → ι . 0))) 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x2 (λ x12 : ι → ι . x12 (x2 (λ x13 : ι → ι . 0) (λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 . 0) (λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0) 0)) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . setsum (Inj0 0) (x3 (λ x15 : ι → ι . λ x16 : ι → (ι → ι) → ι → ι . λ x17 . 0) (λ x15 : ι → ι . 0))) (λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . λ x14 . setsum (x1 (λ x15 : ι → ι → ι . 0) (λ x15 : ι → ι . 0)) 0) (x1 (λ x12 : ι → ι → ι . x3 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . λ x15 . 0) (λ x13 : ι → ι . 0)) (λ x12 : ι → ι . 0))) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . 0) 0) (x6 (x3 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . 0) (λ x9 : ι → ι . x6 (x2 (λ x10 : ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . 0) 0) (setsum 0 0))) (setsum (setsum (x0 (λ x9 : ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 : (ι → ι) → ι . λ x10 x11 . 0)) x4) (x3 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . Inj0 0) (λ x9 : ι → ι . x6 0 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → (ι → ι → ι) → ι → ι → ι . x3 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . x9 0) (λ x9 : ι → ι . 0) = x4) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → ι . x2 (λ x9 : ι → ι . x1 (λ x10 : ι → ι → ι . x1 (λ x11 : ι → ι → ι . x1 (λ x12 : ι → ι → ι . 0) (λ x12 : ι → ι . setsum 0 0)) (λ x11 : ι → ι . x7 0)) (λ x10 : ι → ι . 0)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x0 (λ x12 : ι → ι . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . setsum (x1 (λ x16 : ι → ι → ι . x3 (λ x17 : ι → ι . λ x18 : ι → (ι → ι) → ι → ι . λ x19 . 0) (λ x17 : ι → ι . 0)) (λ x16 : ι → ι . 0)) 0) (λ x12 : (ι → ι) → ι . λ x13 x14 . setsum (x3 (λ x15 : ι → ι . λ x16 : ι → (ι → ι) → ι → ι . λ x17 . 0) (λ x15 : ι → ι . setsum 0 0)) (x1 (λ x15 : ι → ι → ι . 0) (λ x15 : ι → ι . x2 (λ x16 : ι → ι . 0) (λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 . 0) (λ x16 : (ι → ι) → ι → ι . λ x17 : ι → ι . λ x18 . 0) 0)))) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x0 (λ x12 : ι → ι . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x12 : (ι → ι) → ι . λ x13 x14 . 0)) (Inj1 0) = Inj0 x4) ⟶ (∀ x4 : ι → (ι → ι) → (ι → ι) → ι → ι . ∀ x5 : ι → (ι → ι → ι) → ι → ι . ∀ x6 : (ι → ι → ι → ι) → (ι → ι) → ι → ι . ∀ x7 : ((ι → ι) → ι → ι → ι) → ι → ι . x2 (λ x9 : ι → ι . setsum (x9 (x1 (λ x10 : ι → ι → ι . x9 0) (λ x10 : ι → ι . x7 (λ x11 : ι → ι . λ x12 x13 . 0) 0))) (x6 (λ x10 x11 x12 . x11) (λ x10 . x6 (λ x11 x12 x13 . 0) (λ x11 . x7 (λ x12 : ι → ι . λ x13 x14 . 0) 0) 0) (x1 (λ x10 : ι → ι → ι . x10 0 0) (λ x10 : ι → ι . setsum 0 0)))) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x11) (x6 (λ x9 x10 x11 . setsum x10 x10) (λ x9 . 0) (x7 (λ x9 : ι → ι . λ x10 x11 . x10) (x6 (λ x9 x10 x11 . x3 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . 0) (λ x12 : ι → ι . 0)) (λ x9 . x9) (x4 0 (λ x9 . 0) (λ x9 . 0) 0)))) = x6 (λ x9 x10 x11 . Inj1 (setsum (setsum (x0 (λ x12 : ι → ι . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x12 : (ι → ι) → ι . λ x13 x14 . 0)) 0) x10)) (λ x9 . setsum (x0 (λ x10 : ι → ι . setsum (x10 0) (x6 (λ x11 x12 x13 . 0) (λ x11 . 0) 0)) (λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . λ x13 . x1 (λ x14 : ι → ι → ι . 0) (λ x14 : ι → ι . setsum 0 0)) (λ x10 : (ι → ι) → ι . λ x11 x12 . x3 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . λ x15 . x2 (λ x16 : ι → ι . 0) (λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 . 0) (λ x16 : (ι → ι) → ι → ι . λ x17 : ι → ι . λ x18 . 0) 0) (λ x13 : ι → ι . Inj0 0))) (setsum 0 0)) (setsum (x4 (x5 (x4 0 (λ x9 . 0) (λ x9 . 0) 0) (λ x9 x10 . Inj0 0) (x4 0 (λ x9 . 0) (λ x9 . 0) 0)) (λ x9 . 0) (λ x9 . 0) (setsum 0 (setsum 0 0))) (x2 (λ x9 : ι → ι . setsum (setsum 0 0) (x6 (λ x10 x11 x12 . 0) (λ x10 . 0) 0)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . 0) (x7 (λ x9 : ι → ι . λ x10 x11 . x11) (Inj0 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → (ι → ι → ι) → ι . x1 (λ x9 : ι → ι → ι . setsum (x2 (λ x10 : ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . x3 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . λ x15 . 0) (λ x13 : ι → ι . x12)) (x2 (λ x10 : ι → ι . x2 (λ x11 : ι → ι . 0) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . 0) (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0) 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . Inj1 0) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . x10 (λ x13 . 0) 0) (x1 (λ x10 : ι → ι → ι . 0) (λ x10 : ι → ι . 0)))) (setsum (x3 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι → ι . λ x12 . x11 0 (λ x13 . 0) 0) (λ x10 : ι → ι . x9 0 0)) (x2 (λ x10 : ι → ι . Inj1 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . x9 0 0) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . 0) 0))) (λ x9 : ι → ι . x5 (Inj0 (x1 (λ x10 : ι → ι → ι . Inj1 0) (λ x10 : ι → ι . setsum 0 0)))) = setsum 0 x6) ⟶ (∀ x4 : (ι → ι) → ι → ι . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 : (((ι → ι) → ι) → (ι → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x7 . x1 (λ x9 : ι → ι → ι . Inj0 x7) (λ x9 : ι → ι . 0) = Inj0 (Inj0 0)) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι → ι . ∀ x7 : ((ι → ι → ι) → ι → ι) → ι → ι . x0 (λ x9 : ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . x1 (λ x13 : ι → ι → ι . setsum 0 (setsum (x0 (λ x14 : ι → ι . 0) (λ x14 : ((ι → ι) → ι → ι) → ι → ι . λ x15 . λ x16 : ι → ι . λ x17 . 0) (λ x14 : (ι → ι) → ι . λ x15 x16 . 0)) 0)) (λ x13 : ι → ι . 0)) (λ x9 : (ι → ι) → ι . λ x10 x11 . x3 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . x3 (λ x15 : ι → ι . λ x16 : ι → (ι → ι) → ι → ι . λ x17 . Inj1 (x2 (λ x18 : ι → ι . 0) (λ x18 . λ x19 : (ι → ι) → ι → ι . λ x20 . 0) (λ x18 : (ι → ι) → ι → ι . λ x19 : ι → ι . λ x20 . 0) 0)) (λ x15 : ι → ι . 0)) (λ x12 : ι → ι . Inj0 0)) = setsum 0 0) ⟶ (∀ x4 : (ι → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 . x0 (λ x9 : ι → ι . x1 (λ x10 : ι → ι → ι . setsum (x2 (λ x11 : ι → ι . Inj1 0) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . x2 (λ x14 : ι → ι . 0) (λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 . 0) (λ x14 : (ι → ι) → ι → ι . λ x15 : ι → ι . λ x16 . 0) 0) (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0) 0) (x9 (Inj0 0))) (λ x10 : ι → ι . x10 0)) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 . λ x11 : ι → ι . λ x12 . x3 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . λ x15 . setsum 0 x12) (λ x13 : ι → ι . setsum x12 (x11 (x2 (λ x14 : ι → ι . 0) (λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 . 0) (λ x14 : (ι → ι) → ι → ι . λ x15 : ι → ι . λ x16 . 0) 0)))) (λ x9 : (ι → ι) → ι . λ x10 x11 . x1 (λ x12 : ι → ι → ι . 0) (λ x12 : ι → ι . x3 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . λ x15 . 0) (λ x13 : ι → ι . 0))) = Inj1 (x4 (λ x9 . λ x10 : ι → ι . λ x11 . x0 (λ x12 : ι → ι . x9) (λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x12 : (ι → ι) → ι . λ x13 x14 . x2 (λ x15 : ι → ι . setsum 0 0) (λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 . setsum 0 0) (λ x15 : (ι → ι) → ι → ι . λ x16 : ι → ι . λ x17 . x15 (λ x18 . 0) 0) 0)) (λ x9 : ι → ι . λ x10 . x2 (λ x11 : ι → ι . x2 (λ x12 : ι → ι . x1 (λ x13 : ι → ι → ι . 0) (λ x13 : ι → ι . 0)) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . x3 (λ x15 : ι → ι . λ x16 : ι → (ι → ι) → ι → ι . λ x17 . 0) (λ x15 : ι → ι . 0)) (λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . λ x14 . Inj1 0) x10) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . Inj1 (x12 (λ x14 . 0) 0)) (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . x11 (λ x14 . x11 (λ x15 . 0) 0) (x1 (λ x14 : ι → ι → ι . 0) (λ x14 : ι → ι . 0))) 0) (λ x9 . x5))) ⟶ False (proof)Theorem b3cd9.. : ∀ x0 : ((ι → ι → (ι → ι) → ι) → ι) → (ι → ι → ι → ι → ι) → ((ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x1 : (ι → ι) → (ι → (ι → ι) → ι) → ι . ∀ x2 : ((((ι → ι) → (ι → ι) → ι → ι) → ι → ι) → ι) → ι → ι . ∀ x3 : (((ι → ι → ι → ι) → ι) → ι → ((ι → ι) → ι → ι) → ι → ι → ι) → (((ι → ι → ι) → ι → ι) → ι) → ι . (∀ x4 x5 x6 . ∀ x7 : (((ι → ι) → ι → ι) → ι → ι) → ι → ι . x3 (λ x9 : (ι → ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . 0) (λ x9 : (ι → ι → ι) → ι → ι . setsum 0 0) = x6) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 : ι → (ι → ι) → ι . ∀ x7 : (ι → ι) → ι . x3 (λ x9 : (ι → ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x13) (λ x9 : (ι → ι → ι) → ι → ι . x6 (x6 (x0 (λ x10 : ι → ι → (ι → ι) → ι . x7 (λ x11 . 0)) (λ x10 x11 x12 x13 . 0) (λ x10 x11 : ι → ι . λ x12 . x12)) (λ x10 . x7 (λ x11 . x1 (λ x12 . 0) (λ x12 . λ x13 : ι → ι . 0)))) (λ x10 . 0)) = x6 (x3 (λ x9 : (ι → ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . Inj1) (λ x9 : (ι → ι → ι) → ι → ι . x7 (λ x10 . x3 (λ x11 : (ι → ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 x15 . setsum 0 0) (λ x11 : (ι → ι → ι) → ι → ι . Inj1 0)))) (λ x9 . x6 (x3 (λ x10 : (ι → ι → ι → ι) → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . x12 (λ x14 . x2 (λ x15 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . 0) 0)) (λ x10 : (ι → ι → ι) → ι → ι . setsum (x0 (λ x11 : ι → ι → (ι → ι) → ι . 0) (λ x11 x12 x13 x14 . 0) (λ x11 x12 : ι → ι . λ x13 . 0)) (x6 0 (λ x11 . 0)))) (λ x10 . setsum x9 0))) ⟶ (∀ x4 x5 . ∀ x6 : (((ι → ι) → ι) → ι → ι → ι) → ι → ι . ∀ x7 : ι → ι . x2 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . setsum (x3 (λ x10 : (ι → ι → ι → ι) → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . 0) (λ x10 : (ι → ι → ι) → ι → ι . x0 (λ x11 : ι → ι → (ι → ι) → ι . x0 (λ x12 : ι → ι → (ι → ι) → ι . 0) (λ x12 x13 x14 x15 . 0) (λ x12 x13 : ι → ι . λ x14 . 0)) (λ x11 x12 x13 x14 . x3 (λ x15 : (ι → ι → ι → ι) → ι . λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 x19 . 0) (λ x15 : (ι → ι → ι) → ι → ι . 0)) (λ x11 x12 : ι → ι . λ x13 . x3 (λ x14 : (ι → ι → ι → ι) → ι . λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 x18 . 0) (λ x14 : (ι → ι → ι) → ι → ι . 0)))) (x6 (λ x10 : (ι → ι) → ι . λ x11 x12 . x3 (λ x13 : (ι → ι → ι → ι) → ι . λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 x17 . 0) (λ x13 : (ι → ι → ι) → ι → ι . x11)) (x2 (λ x10 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . setsum 0 0) (x3 (λ x10 : (ι → ι → ι → ι) → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . 0) (λ x10 : (ι → ι → ι) → ι → ι . 0))))) (x3 (λ x9 : (ι → ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x13) (λ x9 : (ι → ι → ι) → ι → ι . x5)) = x3 (λ x9 : (ι → ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . setsum (setsum (Inj1 (x11 (λ x14 . 0) 0)) 0) 0) (λ x9 : (ι → ι → ι) → ι → ι . Inj1 (Inj0 (x2 (λ x10 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . x7 0) (x2 (λ x10 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . 0) 0))))) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 : (((ι → ι) → ι) → ι) → ι → ι . x2 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . Inj0 (x3 (λ x10 : (ι → ι → ι → ι) → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . x12 (λ x15 . setsum 0 0) (Inj1 0)) (λ x10 : (ι → ι → ι) → ι → ι . x6 0 (x1 (λ x11 . 0) (λ x11 . λ x12 : ι → ι . 0)) (Inj0 0) (x0 (λ x11 : ι → ι → (ι → ι) → ι . 0) (λ x11 x12 x13 x14 . 0) (λ x11 x12 : ι → ι . λ x13 . 0))))) (setsum (x6 (x2 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . x6 0 0 0 0) (x3 (λ x9 : (ι → ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . 0) (λ x9 : (ι → ι → ι) → ι → ι . 0))) x4 0 (Inj1 0)) (x7 (λ x9 : (ι → ι) → ι . setsum (x6 0 0 0 0) (x5 (λ x10 . 0))) 0)) = x5 (λ x9 . setsum (x5 (λ x10 . x1 (λ x11 . 0) (λ x11 . λ x12 : ι → ι . 0))) (setsum (x1 (λ x10 . 0) (λ x10 . λ x11 : ι → ι . x0 (λ x12 : ι → ι → (ι → ι) → ι . 0) (λ x12 x13 x14 x15 . 0) (λ x12 x13 : ι → ι . λ x14 . 0))) (x1 (λ x10 . x7 (λ x11 : (ι → ι) → ι . 0) 0) (λ x10 . λ x11 : ι → ι . x1 (λ x12 . 0) (λ x12 . λ x13 : ι → ι . 0)))))) ⟶ (∀ x4 : ι → ((ι → ι) → ι) → ι → ι . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι → (ι → ι) → ι . x1 (λ x9 . x6) (λ x9 . λ x10 : ι → ι . x3 (λ x11 : (ι → ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 x15 . Inj1 0) (λ x11 : (ι → ι → ι) → ι → ι . Inj1 0)) = setsum (x1 (λ x9 . x3 (λ x10 : (ι → ι → ι → ι) → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . setsum (x1 (λ x15 . 0) (λ x15 . λ x16 : ι → ι . 0)) (x2 (λ x15 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . 0) 0)) (λ x10 : (ι → ι → ι) → ι → ι . setsum (setsum 0 0) x6)) (λ x9 . λ x10 : ι → ι . 0)) 0) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : (ι → (ι → ι) → ι → ι) → ((ι → ι) → ι) → ι → ι . x1 (λ x9 . x1 (λ x10 . x10) (λ x10 . λ x11 : ι → ι . x0 (λ x12 : ι → ι → (ι → ι) → ι . Inj0 (Inj1 0)) (λ x12 x13 x14 x15 . x13) (λ x12 x13 : ι → ι . λ x14 . setsum (x2 (λ x15 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . 0) 0) (x0 (λ x15 : ι → ι → (ι → ι) → ι . 0) (λ x15 x16 x17 x18 . 0) (λ x15 x16 : ι → ι . λ x17 . 0))))) (λ x9 . λ x10 : ι → ι . x10 (setsum (x0 (λ x11 : ι → ι → (ι → ι) → ι . x3 (λ x12 : (ι → ι → ι → ι) → ι . λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 x16 . 0) (λ x12 : (ι → ι → ι) → ι → ι . 0)) (λ x11 x12 x13 x14 . 0) (λ x11 x12 : ι → ι . λ x13 . x0 (λ x14 : ι → ι → (ι → ι) → ι . 0) (λ x14 x15 x16 x17 . 0) (λ x14 x15 : ι → ι . λ x16 . 0))) (x2 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . 0) (Inj1 0)))) = Inj0 (Inj1 (x3 (λ x9 : (ι → ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . 0) (λ x9 : (ι → ι → ι) → ι → ι . x1 (λ x10 . 0) (λ x10 . λ x11 : ι → ι . x0 (λ x12 : ι → ι → (ι → ι) → ι . 0) (λ x12 x13 x14 x15 . 0) (λ x12 x13 : ι → ι . λ x14 . 0)))))) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → (ι → ι → ι) → ι . x0 (λ x9 : ι → ι → (ι → ι) → ι . setsum (x7 (Inj1 (x7 0 (λ x10 x11 . 0))) (λ x10 x11 . x3 (λ x12 : (ι → ι → ι → ι) → ι . λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 x16 . x16) (λ x12 : (ι → ι → ι) → ι → ι . Inj1 0))) (Inj1 (x0 (λ x10 : ι → ι → (ι → ι) → ι . x7 0 (λ x11 x12 . 0)) (λ x10 x11 x12 x13 . x12) (λ x10 x11 : ι → ι . λ x12 . Inj0 0)))) (λ x9 x10 x11 x12 . Inj1 (Inj1 0)) (λ x9 x10 : ι → ι . λ x11 . x3 (λ x12 : (ι → ι → ι → ι) → ι . λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 x16 . Inj1 (x0 (λ x17 : ι → ι → (ι → ι) → ι . 0) (λ x17 x18 x19 x20 . Inj1 0) (λ x17 x18 : ι → ι . λ x19 . setsum 0 0))) (λ x12 : (ι → ι → ι) → ι → ι . Inj1 (x0 (λ x13 : ι → ι → (ι → ι) → ι . x10 0) (λ x13 x14 x15 x16 . 0) (λ x13 x14 : ι → ι . λ x15 . 0)))) = Inj1 0) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ((ι → ι) → ι → ι) → ι . ∀ x7 : ι → ι → ι . x0 (λ x9 : ι → ι → (ι → ι) → ι . x9 (x9 (x1 (λ x10 . setsum 0 0) (λ x10 . λ x11 : ι → ι . setsum 0 0)) (x2 (λ x10 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . 0) 0) (λ x10 . x0 (λ x11 : ι → ι → (ι → ι) → ι . x0 (λ x12 : ι → ι → (ι → ι) → ι . 0) (λ x12 x13 x14 x15 . 0) (λ x12 x13 : ι → ι . λ x14 . 0)) (λ x11 x12 x13 x14 . x13) (λ x11 x12 : ι → ι . λ x13 . 0))) 0 (λ x10 . 0)) (λ x9 x10 x11 x12 . 0) (λ x9 x10 : ι → ι . λ x11 . x7 (x0 (λ x12 : ι → ι → (ι → ι) → ι . x11) (λ x12 x13 x14 x15 . x15) (λ x12 x13 : ι → ι . λ x14 . 0)) (x1 (x2 (λ x12 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . x11)) (λ x12 . λ x13 : ι → ι . x12))) = Inj0 x5) ⟶ False (proof)Theorem 759ad.. : ∀ x0 : ((ι → ((ι → ι) → ι) → ι) → ι) → (ι → ι → (ι → ι) → ι → ι) → ι → ι → (ι → ι) → ι → ι . ∀ x1 : ((((ι → ι → ι) → ι → ι → ι) → ι) → ι → ι → ι → ι → ι) → ι → ι . ∀ x2 : (ι → (((ι → ι) → ι) → ι → ι → ι) → ι) → ((((ι → ι) → ι → ι) → ι → ι) → ι → ι → ι) → ι . ∀ x3 : (ι → ι → ι) → (ι → ι) → ι . (∀ x4 : (((ι → ι) → ι) → (ι → ι) → ι) → (ι → ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 x10 . 0) (λ x9 . 0) = Inj1 (setsum (x1 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x10 x11 x12 x13 . x13) (Inj0 0)) x5)) ⟶ (∀ x4 : (ι → (ι → ι) → ι → ι) → ι . ∀ x5 x6 : ι → ι . ∀ x7 : (ι → ι) → (ι → ι → ι) → ι → ι . x3 (λ x9 x10 . x7 (λ x11 . setsum (x7 (λ x12 . x3 (λ x13 x14 . 0) (λ x13 . 0)) (λ x12 x13 . 0) (Inj0 0)) x10) (λ x11 x12 . Inj1 (x1 (λ x13 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x14 x15 x16 x17 . x16) (x1 (λ x13 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x14 x15 x16 x17 . 0) 0))) (x6 (Inj0 0))) (λ x9 . 0) = x7 (λ x9 . setsum 0 (x0 (λ x10 : ι → ((ι → ι) → ι) → ι . x1 (λ x11 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x12 x13 x14 x15 . x2 (λ x16 . λ x17 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x16 : ((ι → ι) → ι → ι) → ι → ι . λ x17 x18 . 0)) 0) (λ x10 x11 . λ x12 : ι → ι . λ x13 . Inj1 (x2 (λ x14 . λ x15 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x14 : ((ι → ι) → ι → ι) → ι → ι . λ x15 x16 . 0))) 0 (x6 0) (λ x10 . Inj0 (setsum 0 0)) (x0 (λ x10 : ι → ((ι → ι) → ι) → ι . setsum 0 0) (λ x10 x11 . λ x12 : ι → ι . λ x13 . 0) (setsum 0 0) (x7 (λ x10 . 0) (λ x10 x11 . 0) 0) (λ x10 . x7 (λ x11 . 0) (λ x11 x12 . 0) 0) 0))) (λ x9 x10 . setsum (x2 (λ x11 . λ x12 : ((ι → ι) → ι) → ι → ι → ι . x0 (λ x13 : ι → ((ι → ι) → ι) → ι . x11) (λ x13 x14 . λ x15 : ι → ι . λ x16 . x14) (x2 (λ x13 . λ x14 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι . λ x14 x15 . 0)) (x12 (λ x13 : ι → ι . 0) 0 0) (λ x13 . x0 (λ x14 : ι → ((ι → ι) → ι) → ι . 0) (λ x14 x15 . λ x16 : ι → ι . λ x17 . 0) 0 0 (λ x14 . 0) 0) 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι . λ x12 x13 . 0)) (x3 (λ x11 x12 . 0) (λ x11 . x10))) (x1 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x10 x11 x12 x13 . Inj1 (x3 (λ x14 x15 . Inj0 0) (λ x14 . setsum 0 0))) (setsum (x3 (λ x9 x10 . x10) (λ x9 . Inj0 0)) (setsum (setsum 0 0) (x1 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x10 x11 x12 x13 . 0) 0))))) ⟶ (∀ x4 x5 . ∀ x6 : ((ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x7 . x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι → ι → ι . x10 (λ x11 : ι → ι . x3 (λ x12 x13 . Inj0 (x11 0)) (λ x12 . x1 (λ x13 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x14 x15 x16 x17 . x1 (λ x18 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x19 x20 x21 x22 . 0) 0) (setsum 0 0))) (Inj0 x9) 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 x11 . 0) = x6 (λ x9 : ι → ι . 0) 0 (λ x9 . x6 (λ x10 : ι → ι . x7) (x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι → ι → ι . Inj1 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 x12 . 0)) (λ x10 . 0))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 : (ι → ι) → ι . x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 x11 . x11) = x7 (λ x9 . x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι → ι → ι . setsum (x0 (λ x12 : ι → ((ι → ι) → ι) → ι . x2 (λ x13 . λ x14 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι . λ x14 x15 . 0)) (λ x12 x13 . λ x14 : ι → ι . λ x15 . x3 (λ x16 x17 . 0) (λ x16 . 0)) 0 (x3 (λ x12 x13 . 0) (λ x12 . 0)) (λ x12 . 0) x9) (x11 (λ x12 : ι → ι . x3 (λ x13 x14 . 0) (λ x13 . 0)) (x7 (λ x12 . 0)) x9)) (λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 x12 . x2 (λ x13 . λ x14 : ((ι → ι) → ι) → ι → ι → ι . x13) (λ x13 : ((ι → ι) → ι → ι) → ι → ι . λ x14 x15 . setsum (x2 (λ x16 . λ x17 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x16 : ((ι → ι) → ι → ι) → ι → ι . λ x17 x18 . 0)) (setsum 0 0))))) ⟶ (∀ x4 : (ι → (ι → ι) → ι) → (ι → ι) → ι . ∀ x5 : ι → ι → (ι → ι) → ι → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι . x1 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x10 x11 x12 x13 . 0) 0 = x4 (λ x9 . λ x10 : ι → ι . 0) (x0 (λ x9 : ι → ((ι → ι) → ι) → ι . Inj0 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . setsum x10 (Inj0 (x11 0))) x6 (setsum x6 (x7 (λ x9 . x7 (λ x10 . 0)))) (λ x9 . 0))) ⟶ (∀ x4 : ι → (ι → ι → ι) → ι → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι → ι) → ι) → ι . x1 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x10 x11 x12 x13 . x1 (λ x14 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x15 x16 x17 x18 . x1 (λ x19 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x20 x21 x22 x23 . Inj1 0) (Inj1 (x1 (λ x19 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x20 x21 x22 x23 . 0) 0))) x11) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι → ι → ι . x3 (λ x11 x12 . Inj0 (x0 (λ x13 : ι → ((ι → ι) → ι) → ι . 0) (λ x13 x14 . λ x15 : ι → ι . λ x16 . 0) 0 0 (λ x13 . 0) 0)) (λ x11 . 0)) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 x11 . Inj1 0)) = setsum x5 0) ⟶ (∀ x4 : ι → (ι → ι → ι) → ι . ∀ x5 : ι → ι → ι → ι . ∀ x6 : (ι → ι) → ι . ∀ x7 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι → ι . x0 (λ x9 : ι → ((ι → ι) → ι) → ι . Inj0 (x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι → ι → ι . Inj1 (setsum 0 0)) (λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 x12 . Inj0 0))) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x12) 0 0 (λ x9 . 0) (x3 (λ x9 x10 . x3 (λ x11 x12 . x3 (λ x13 x14 . x12) (λ x13 . 0)) (λ x11 . x7 (λ x12 : ι → ι . λ x13 . 0) (λ x12 : ι → ι . x9) (λ x12 . x1 (λ x13 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x14 x15 x16 x17 . 0) 0) 0)) (λ x9 . 0)) = Inj1 (Inj0 (setsum (setsum (x1 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x10 x11 x12 x13 . 0) 0) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 x11 . 0))) (x6 (λ x9 . x0 (λ x10 : ι → ((ι → ι) → ι) → ι . 0) (λ x10 x11 . λ x12 : ι → ι . λ x13 . 0) 0 0 (λ x10 . 0) 0))))) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι → ι . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 : ι → ((ι → ι) → ι) → ι . setsum (setsum (setsum (x1 (λ x10 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x11 x12 x13 x14 . 0) 0) (x2 (λ x10 . λ x11 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 x12 . 0))) (Inj0 (setsum 0 0))) (Inj1 (Inj0 (x0 (λ x10 : ι → ((ι → ι) → ι) → ι . 0) (λ x10 x11 . λ x12 : ι → ι . λ x13 . 0) 0 0 (λ x10 . 0) 0)))) (λ x9 x10 . λ x11 : ι → ι . λ x12 . setsum 0 (x2 (λ x13 . λ x14 : ((ι → ι) → ι) → ι → ι → ι . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι . λ x14 x15 . x2 (λ x16 . λ x17 : ((ι → ι) → ι) → ι → ι → ι . x15) (λ x16 : ((ι → ι) → ι → ι) → ι → ι . λ x17 x18 . x17)))) (Inj0 0) (x0 (λ x9 : ι → ((ι → ι) → ι) → ι . Inj0 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . setsum x12 (x1 (λ x13 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x14 x15 x16 x17 . x14) (x1 (λ x13 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x14 x15 x16 x17 . 0) 0))) (Inj0 x7) (x0 (λ x9 : ι → ((ι → ι) → ι) → ι . setsum (x0 (λ x10 : ι → ((ι → ι) → ι) → ι . 0) (λ x10 x11 . λ x12 : ι → ι . λ x13 . 0) 0 0 (λ x10 . 0) 0) 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . Inj0 (Inj0 0)) (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . Inj0 0) x6) (x0 (λ x9 : ι → ((ι → ι) → ι) → ι . 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x12) 0 (x0 (λ x9 : ι → ((ι → ι) → ι) → ι . 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . 0) 0 0 (λ x9 . 0) 0) (λ x9 . Inj1 0) 0) (λ x9 . x3 (λ x10 x11 . 0) (λ x10 . setsum 0 0)) 0) (λ x9 . 0) (x1 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → ι . λ x10 x11 x12 x13 . x3 (λ x14 x15 . setsum 0 0) (λ x14 . x0 (λ x15 : ι → ((ι → ι) → ι) → ι . 0) (λ x15 x16 . λ x17 : ι → ι . λ x18 . 0) 0 0 (λ x15 . 0) 0)) 0)) (λ x9 . 0) (x2 (λ x9 . λ x10 : ((ι → ι) → ι) → ι → ι → ι . setsum (x3 (λ x11 x12 . 0) (λ x11 . setsum 0 0)) 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 x11 . x9 (λ x12 : ι → ι . λ x13 . Inj1 (setsum 0 0)) x7)) = Inj1 (setsum x7 (Inj0 x7))) ⟶ False (proof)Theorem 2badf.. : ∀ x0 : (ι → ι) → ι → ι . ∀ x1 : (ι → ι → ι) → ι → ((ι → ι → ι) → ι) → ι . ∀ x2 : (ι → ι) → ι → ι . ∀ x3 : ((ι → ι) → ι) → ι → ι . (∀ x4 . ∀ x5 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ((ι → ι) → ι → ι) → ι → ι → ι . x3 (λ x9 : ι → ι . setsum (x7 (setsum (x0 (λ x10 . 0) 0) (x1 (λ x10 x11 . 0) 0 (λ x10 : ι → ι → ι . 0))) (λ x10 : ι → ι . λ x11 . 0) 0 0) (setsum (Inj1 (setsum 0 0)) 0)) (x0 (λ x9 . 0) (Inj1 (setsum (x0 (λ x9 . 0) 0) (x5 (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . 0))))) = Inj0 0) ⟶ (∀ x4 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι → ι) → ((ι → ι) → ι) → ι . ∀ x6 : ι → ι → ι . ∀ x7 : (ι → ι → ι → ι) → ι . x3 (λ x9 : ι → ι . Inj1 (x5 (λ x10 : (ι → ι) → ι → ι . λ x11 . x11) (λ x10 : ι → ι . Inj1 0))) (x1 (λ x9 x10 . setsum (x2 (λ x11 . setsum 0 0) 0) 0) (x2 (λ x9 . Inj0 0) (x4 (λ x9 . λ x10 : ι → ι . x6 0 0) (λ x9 : ι → ι . λ x10 . x6 0 0))) (λ x9 : ι → ι → ι . setsum (x9 0 0) (Inj0 0))) = setsum (x3 (λ x9 : ι → ι . 0) (Inj0 (x1 (λ x9 x10 . x0 (λ x11 . 0) 0) (x2 (λ x9 . 0) 0) (λ x9 : ι → ι → ι . x9 0 0)))) 0) ⟶ (∀ x4 : ((ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : (ι → ι → ι) → ι . ∀ x7 . x2 (λ x9 . x6 (λ x10 x11 . 0)) (x2 (λ x9 . x2 (λ x10 . setsum x10 0) 0) x7) = x6 (λ x9 x10 . setsum x7 (x0 (λ x11 . setsum x11 x7) (x0 (λ x11 . x0 (λ x12 . 0) 0) 0)))) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 . x2 (x6 x7 0) 0 = x6 (Inj0 (x6 (x1 (λ x9 x10 . 0) 0 (λ x9 : ι → ι → ι . x6 0 0 0)) (x5 (x1 (λ x9 x10 . 0) 0 (λ x9 : ι → ι → ι . 0)) 0) (x1 (λ x9 x10 . x7) x7 (λ x9 : ι → ι → ι . 0)))) (x6 (x1 (λ x9 x10 . x3 (λ x11 : ι → ι . x7) 0) (setsum (x6 0 0 0) (Inj1 0)) (λ x9 : ι → ι → ι . x9 (x1 (λ x10 x11 . 0) 0 (λ x10 : ι → ι → ι . 0)) (setsum 0 0))) (x0 (λ x9 . x0 (λ x10 . x7) x7) (x2 (λ x9 . Inj0 0) (x3 (λ x9 : ι → ι . 0) 0))) (x0 (x0 (λ x9 . 0)) (x6 0 (setsum 0 0) (x3 (λ x9 : ι → ι . 0) 0)))) x7) ⟶ (∀ x4 : ι → (ι → ι) → ι → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 : (ι → ι) → (ι → ι) → ι . ∀ x7 : ι → ι . x1 (λ x9 x10 . x0 (λ x11 . Inj1 (Inj1 0)) (x7 0)) (x5 (λ x9 . x2 (λ x10 . x6 (λ x11 . setsum 0 0) (λ x11 . x2 (λ x12 . 0) 0)) (x0 (λ x10 . 0) (setsum 0 0)))) (λ x9 : ι → ι → ι . x5 (λ x10 . Inj1 0)) = Inj1 0) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 . x1 (λ x9 x10 . Inj0 (Inj1 (x2 (λ x11 . 0) 0))) (x5 (λ x9 : ι → ι → ι . x3 (λ x10 : ι → ι . x3 (λ x11 : ι → ι . 0) (x9 0 0)) (setsum (Inj0 0) 0))) (λ x9 : ι → ι → ι . x7) = setsum (x2 (λ x9 . Inj1 (x0 (λ x10 . 0) x7)) 0) (x1 (λ x9 x10 . x6 (setsum (x1 (λ x11 x12 . 0) 0 (λ x11 : ι → ι → ι . 0)) x9) x7 (x1 (λ x11 x12 . 0) (setsum 0 0) (λ x11 : ι → ι → ι . 0)) x9) x4 (λ x9 : ι → ι → ι . setsum (Inj1 (Inj0 0)) (x9 (x5 (λ x10 : ι → ι → ι . 0)) (x2 (λ x10 . 0) 0))))) ⟶ (∀ x4 : (ι → (ι → ι) → ι) → ι → ι . ∀ x5 . ∀ x6 : ι → ι → ι . ∀ x7 . x0 (λ x9 . x0 (λ x10 . x10) (Inj1 (Inj0 (x1 (λ x10 x11 . 0) 0 (λ x10 : ι → ι → ι . 0))))) (x2 (λ x9 . x7) x5) = x2 (λ x9 . Inj0 0) (x2 (λ x9 . setsum (x0 (λ x10 . 0) (setsum 0 0)) (setsum (x2 (λ x10 . 0) 0) x7)) 0)) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 . 0) 0 = x7) ⟶ False (proof)Theorem e05d4.. : ∀ x0 : (ι → ι → ι) → (ι → ι) → ι . ∀ x1 : ((ι → ι) → (ι → (ι → ι) → ι → ι) → ι → ι) → ι → ι . ∀ x2 : (ι → (((ι → ι) → ι → ι) → ι → ι → ι) → ι) → ((((ι → ι) → ι) → ι) → ι → ι) → ι . ∀ x3 : (((ι → ι → ι) → ι → ι) → ι → ι) → ι → ι → ι → ι . (∀ x4 x5 x6 x7 . x3 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 . x9 (λ x11 x12 . x11) (Inj0 (x9 (λ x11 x12 . Inj0 0) (setsum 0 0)))) (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι) → ι . λ x10 . 0)) 0 (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . setsum (Inj1 (x0 (λ x11 x12 . 0) (λ x11 . 0)))) x6) = setsum 0 0) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι . ∀ x5 x6 x7 . x3 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 . x10) (x0 (λ x9 x10 . 0) (λ x9 . x9)) x6 (x0 (λ x9 x10 . 0) (λ x9 . 0)) = x6) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → (ι → ι → ι) → (ι → ι) → ι → ι . ∀ x7 . x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι) → ι . λ x10 . Inj1 (x3 (λ x11 : (ι → ι → ι) → ι → ι . λ x12 . x11 (λ x13 x14 . x14) (x1 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . λ x15 . 0) 0)) 0 0 0)) = setsum (x0 (λ x9 x10 . setsum 0 (x6 (x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x11 : ((ι → ι) → ι) → ι . λ x12 . 0)) (λ x11 x12 . x12) (λ x11 . 0) (setsum 0 0))) (λ x9 . setsum (Inj1 (Inj0 0)) (x1 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι → ι . λ x12 . setsum 0 0) x5))) x7) ⟶ (∀ x4 : (ι → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι) → (ι → ι) → ι) → ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → ι . x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι) → ι . λ x10 . x10) = x5) ⟶ (∀ x4 : ι → ((ι → ι) → ι) → ι . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . 0) (x6 (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x9 : ((ι → ι) → ι) → ι . λ x10 . x0 (λ x11 x12 . Inj0 0) (λ x11 . 0)))) = Inj1 (setsum (setsum (x5 (λ x9 : ι → ι . 0)) 0) (Inj0 (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . 0) 0) (setsum 0 0))))) ⟶ (∀ x4 . ∀ x5 : ι → (ι → ι) → ι → ι → ι . ∀ x6 . ∀ x7 : ι → ((ι → ι) → ι → ι) → ι . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . x3 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 . 0) 0 (Inj1 (setsum 0 (x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . 0) 0))) (x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . Inj0 0) (Inj1 (x0 (λ x12 x13 . 0) (λ x12 . 0))))) (setsum (setsum x6 0) (Inj0 (Inj1 0))) = Inj0 (x3 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 . x1 (λ x11 : ι → ι . λ x12 : ι → (ι → ι) → ι → ι . λ x13 . x3 (λ x14 : (ι → ι → ι) → ι → ι . λ x15 . setsum 0 0) (x2 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x14 : ((ι → ι) → ι) → ι . λ x15 . 0)) 0 0) (Inj0 (x0 (λ x11 x12 . 0) (λ x11 . 0)))) (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . x9 (setsum 0 0)) (x7 (x5 0 (λ x9 . 0) 0 0) (λ x9 : ι → ι . λ x10 . x10))) (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . Inj0 (x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x11 : ((ι → ι) → ι) → ι . λ x12 . 0))) (λ x9 : ((ι → ι) → ι) → ι . λ x10 . 0)) x6)) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι . ∀ x7 : (((ι → ι) → ι → ι) → ι) → ι → ι . x0 (λ x9 x10 . Inj0 (Inj0 0)) (λ x9 . x3 (λ x10 : (ι → ι → ι) → ι → ι . λ x11 . x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . setsum x14 0) (setsum (setsum 0 0) 0)) 0 (Inj0 (Inj0 0)) (Inj0 (x2 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . x10) (λ x10 : ((ι → ι) → ι) → ι . λ x11 . 0)))) = Inj1 x4) ⟶ (∀ x4 x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 x10 . x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum 0 0) (λ x11 : ((ι → ι) → ι) → ι . λ x12 . 0)) (λ x9 . x1 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι → ι . λ x12 . 0) (Inj1 x7)) = x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . Inj0 (setsum (x3 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 . x11) (Inj0 0) (x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . 0) 0) (x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x12 : ((ι → ι) → ι) → ι . λ x13 . 0))) (setsum (setsum 0 0) (Inj1 0)))) (Inj1 (Inj0 (setsum (x5 0) (x0 (λ x9 x10 . 0) (λ x9 . 0)))))) ⟶ False (proof)Theorem 55ef0.. : ∀ x0 : (ι → ι) → ((ι → ι → ι → ι) → ι) → ι → ι . ∀ x1 : (((((ι → ι) → ι) → ι → ι) → ι) → ι → ι) → ι → ι → ι . ∀ x2 x3 : (ι → ι) → ι → ι . (∀ x4 : ((ι → ι) → ι → ι → ι) → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x6 : (ι → ι → ι) → ι . ∀ x7 : (ι → ι) → ι . x3 (λ x9 . x5 (λ x10 : (ι → ι) → ι → ι . 0) 0 (λ x10 . 0)) (setsum (x2 (λ x9 . setsum (x3 (λ x10 . 0) 0) (setsum 0 0)) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . setsum 0 0) (setsum 0 0) (setsum 0 0))) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . x3 (λ x11 . x10) (x7 (λ x11 . 0))) (x6 (λ x9 x10 . 0)) (x7 (λ x9 . x5 (λ x10 : (ι → ι) → ι → ι . 0) 0 (λ x10 . 0))))) = x5 (λ x9 : (ι → ι) → ι → ι . x7 (λ x10 . x0 (λ x11 . x3 (λ x12 . x3 (λ x13 . 0) 0) (x0 (λ x12 . 0) (λ x12 : ι → ι → ι → ι . 0) 0)) (λ x11 : ι → ι → ι → ι . x1 (λ x12 : (((ι → ι) → ι) → ι → ι) → ι . λ x13 . 0) 0 (x11 0 0 0)) (x2 (λ x11 . Inj1 0) 0))) (setsum (setsum (x2 (λ x9 . Inj1 0) (Inj0 0)) 0) (setsum 0 0)) (λ x9 . Inj1 (x5 (λ x10 : (ι → ι) → ι → ι . Inj0 (Inj1 0)) (Inj1 (x5 (λ x10 : (ι → ι) → ι → ι . 0) 0 (λ x10 . 0))) (λ x10 . 0)))) ⟶ (∀ x4 : ((ι → ι → ι) → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → (ι → ι → ι) → (ι → ι) → ι → ι . ∀ x7 . x3 (λ x9 . x9) (Inj1 (x2 (λ x9 . 0) (x2 (λ x9 . setsum 0 0) (Inj0 0)))) = Inj0 (x2 (λ x9 . Inj1 (Inj0 (x0 (λ x10 . 0) (λ x10 : ι → ι → ι → ι . 0) 0))) (x5 (x0 (λ x9 . 0) (λ x9 : ι → ι → ι → ι . x7) 0)))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 : ι → (ι → ι → ι) → ι . x2 (λ x9 . 0) x4 = x4) ⟶ (∀ x4 . ∀ x5 : ι → (ι → ι) → (ι → ι) → ι → ι . ∀ x6 : ι → (ι → ι → ι) → ι . ∀ x7 . x2 (λ x9 . 0) (x5 (Inj1 (x0 (λ x9 . Inj0 0) (λ x9 : ι → ι → ι → ι . 0) 0)) (λ x9 . 0) (λ x9 . Inj1 0) 0) = x5 (setsum 0 x7) (λ x9 . setsum (Inj0 (x5 (x5 0 (λ x10 . 0) (λ x10 . 0) 0) (λ x10 . Inj1 0) (λ x10 . x0 (λ x11 . 0) (λ x11 : ι → ι → ι → ι . 0) 0) 0)) (x6 (x5 0 (λ x10 . Inj0 0) (λ x10 . Inj1 0) (x5 0 (λ x10 . 0) (λ x10 . 0) 0)) (λ x10 x11 . x9))) (λ x9 . setsum (setsum (setsum 0 (Inj1 0)) (Inj0 (x3 (λ x10 . 0) 0))) (x5 (setsum (x3 (λ x10 . 0) 0) (x2 (λ x10 . 0) 0)) (λ x10 . 0) (λ x10 . 0) (Inj0 (x5 0 (λ x10 . 0) (λ x10 . 0) 0)))) (setsum 0 (x3 (λ x9 . 0) 0))) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → ι . x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . 0) (x3 (λ x9 . 0) x4) (setsum (x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . x9 (λ x11 : (ι → ι) → ι . λ x12 . x9 (λ x13 : (ι → ι) → ι . λ x14 . 0))) (Inj1 x5) 0) (Inj0 0)) = setsum 0 (x0 (λ x9 . x5) (λ x9 : ι → ι → ι → ι . x5) (x0 (λ x9 . x0 (λ x10 . 0) (λ x10 : ι → ι → ι → ι . 0) 0) (λ x9 : ι → ι → ι → ι . x0 (λ x10 . x9 0 0 0) (λ x10 : ι → ι → ι → ι . Inj1 0) (x2 (λ x10 . 0) 0)) 0))) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 : ((ι → ι) → ι) → ι . ∀ x7 . x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . 0) (x5 (λ x9 . setsum x9 0)) (setsum (Inj1 (x4 0 (λ x9 : ι → ι . λ x10 . x2 (λ x11 . 0) 0))) (x5 (λ x9 . setsum (x2 (λ x10 . 0) 0) 0))) = Inj1 0) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → ((ι → ι) → ι → ι) → ι → ι → ι . x0 (λ x9 . 0) (λ x9 : ι → ι → ι → ι . 0) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . x9 (λ x11 : (ι → ι) → ι . λ x12 . 0)) (x2 (λ x9 . x9) 0) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . setsum (setsum 0 0) x6) x5 x6)) = x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . setsum (setsum (setsum 0 (x0 (λ x11 . 0) (λ x11 : ι → ι → ι → ι . 0) 0)) x6) 0) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι) → ι . λ x10 . x9 (λ x11 : (ι → ι) → ι . λ x12 . x11 (λ x13 . Inj1 0))) 0 (x2 (λ x9 . x0 (λ x10 . x2 (λ x11 . 0) 0) (λ x10 : ι → ι → ι → ι . setsum 0 0) (x2 (λ x10 . 0) 0)) x4)) (x3 (λ x9 . x9) (setsum (x0 (λ x9 . 0) (λ x9 : ι → ι → ι → ι . setsum 0 0) (x2 (λ x9 . 0) 0)) (setsum 0 0)))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 . 0) (λ x9 : ι → ι → ι → ι . 0) 0 = x7) ⟶ False (proof)Theorem ca202.. : ∀ x0 : (ι → (ι → ι) → (ι → ι) → ι) → ι → ι . ∀ x1 : (ι → ι) → ((((ι → ι) → ι → ι) → ι → ι) → ι → (ι → ι) → ι) → ι . ∀ x2 : (ι → ι) → ι → ((ι → ι) → ι → ι → ι) → ι . ∀ x3 : (ι → ι) → ((((ι → ι) → ι) → ι) → ι) → ι . (∀ x4 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι . ∀ x5 : ((ι → ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x6 x7 . x3 (λ x9 . setsum x9 (x5 (λ x10 : ι → ι → ι . λ x11 . x2 (λ x12 . x11) x11 (λ x12 : ι → ι . λ x13 x14 . x11)) (λ x10 . 0))) (λ x9 : ((ι → ι) → ι) → ι . x9 (λ x10 : ι → ι . 0)) = Inj1 (Inj0 x7)) ⟶ (∀ x4 : ((ι → ι → ι) → ι → ι) → ι → (ι → ι) → ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : ι → (ι → ι) → (ι → ι) → ι → ι . x3 (λ x9 . 0) (λ x9 : ((ι → ι) → ι) → ι . Inj1 0) = x7 (Inj0 (x4 (λ x9 : ι → ι → ι . λ x10 . 0) (setsum 0 (x1 (λ x9 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 . λ x11 : ι → ι . 0))) (λ x9 . x9) 0)) (λ x9 . x7 (x2 (λ x10 . 0) 0 (λ x10 : ι → ι . λ x11 x12 . 0)) (λ x10 . x10) (λ x10 . x3 (λ x11 . setsum 0 (x3 (λ x12 . 0) (λ x12 : ((ι → ι) → ι) → ι . 0))) (λ x11 : ((ι → ι) → ι) → ι . x1 (λ x12 . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . x2 (λ x15 . 0) 0 (λ x15 : ι → ι . λ x16 x17 . 0)))) 0) (λ x9 . x3 (λ x10 . Inj0 (x6 (setsum 0 0))) (λ x10 : ((ι → ι) → ι) → ι . 0)) (Inj1 (x2 (λ x9 . x7 0 (λ x10 . x6 0) (λ x10 . x2 (λ x11 . 0) 0 (λ x11 : ι → ι . λ x12 x13 . 0)) (Inj1 0)) x5 (λ x9 : ι → ι . λ x10 x11 . x1 (λ x12 . setsum 0 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . x1 (λ x15 . 0) (λ x15 : ((ι → ι) → ι → ι) → ι → ι . λ x16 . λ x17 : ι → ι . 0)))))) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 . setsum 0 0) (x0 (λ x9 . λ x10 x11 : ι → ι . x3 (λ x12 . 0) (λ x12 : ((ι → ι) → ι) → ι . 0)) 0) (λ x9 : ι → ι . λ x10 x11 . Inj0 0) = Inj0 (Inj0 (x2 (λ x9 . x3 (λ x10 . x7) (λ x10 : ((ι → ι) → ι) → ι . x9)) (Inj0 0) (λ x9 : ι → ι . λ x10 x11 . x2 (λ x12 . 0) (Inj0 0) (λ x12 : ι → ι . λ x13 x14 . x13))))) ⟶ (∀ x4 : (ι → ι) → ι → ι . ∀ x5 : ((ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι . x2 (λ x9 . 0) (x2 (λ x9 . Inj1 (setsum (x1 (λ x10 . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . 0)) 0)) (x7 (setsum 0 (setsum 0 0))) (λ x9 : ι → ι . λ x10 x11 . 0)) (λ x9 : ι → ι . λ x10 x11 . 0) = setsum (x0 (λ x9 . λ x10 x11 : ι → ι . x2 (λ x12 . x1 (λ x13 . x1 (λ x14 . 0) (λ x14 : ((ι → ι) → ι → ι) → ι → ι . λ x15 . λ x16 : ι → ι . 0)) (λ x13 : ((ι → ι) → ι → ι) → ι → ι . λ x14 . λ x15 : ι → ι . x15 0)) x9 (λ x12 : ι → ι . λ x13 x14 . setsum (Inj1 0) (Inj1 0))) 0) (x0 (λ x9 . λ x10 x11 : ι → ι . x2 (λ x12 . Inj1 0) (setsum 0 (Inj0 0)) (λ x12 : ι → ι . λ x13 x14 . x11 (x12 0))) 0)) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι → ι → ι . ∀ x7 . x1 (λ x9 . x9) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 . λ x11 : ι → ι . setsum (x9 (λ x12 : ι → ι . λ x13 . 0) (x1 (λ x12 . x1 (λ x13 . 0) (λ x13 : ((ι → ι) → ι → ι) → ι → ι . λ x14 . λ x15 : ι → ι . 0)) (λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . x11 0))) (setsum (x2 (λ x12 . Inj1 0) 0 (λ x12 : ι → ι . λ x13 x14 . 0)) 0)) = setsum 0 x4) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x1 (λ x9 . x1 (λ x10 . x0 (λ x11 . λ x12 x13 : ι → ι . Inj1 0) (x0 (λ x11 . λ x12 x13 : ι → ι . 0) (x0 (λ x11 . λ x12 x13 : ι → ι . 0) 0))) (λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . Inj1 (x2 (λ x13 . x2 (λ x14 . 0) 0 (λ x14 : ι → ι . λ x15 x16 . 0)) (x0 (λ x13 . λ x14 x15 : ι → ι . 0) 0) (λ x13 : ι → ι . λ x14 x15 . x3 (λ x16 . 0) (λ x16 : ((ι → ι) → ι) → ι . 0))))) (λ x9 : ((ι → ι) → ι → ι) → ι → ι . λ x10 . λ x11 : ι → ι . x0 (λ x12 . λ x13 x14 : ι → ι . x13 x12) (x9 (λ x12 : ι → ι . λ x13 . x11 0) (x2 (λ x12 . x3 (λ x13 . 0) (λ x13 : ((ι → ι) → ι) → ι . 0)) (x2 (λ x12 . 0) 0 (λ x12 : ι → ι . λ x13 x14 . 0)) (λ x12 : ι → ι . λ x13 x14 . Inj0 0)))) = Inj1 (setsum (setsum (setsum (setsum 0 0) (Inj1 0)) x7) (x3 (λ x9 . 0) (λ x9 : ((ι → ι) → ι) → ι . 0)))) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → ι) → ι → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι → ι) → ι . ∀ x6 . ∀ x7 : ((ι → ι) → ι) → ι . x0 (λ x9 . λ x10 x11 : ι → ι . 0) 0 = x4 (λ x9 : (ι → ι) → ι → ι . x6) (setsum (Inj0 (x0 (λ x9 . λ x10 x11 : ι → ι . x3 (λ x12 . 0) (λ x12 : ((ι → ι) → ι) → ι . 0)) (x5 (λ x9 : (ι → ι) → ι → ι . λ x10 . 0)))) (x0 (λ x9 . λ x10 x11 : ι → ι . setsum 0 (setsum 0 0)) x6))) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι . x0 (λ x9 . λ x10 x11 : ι → ι . x9) x6 = x6) ⟶ False (proof)Theorem d1cee.. : ∀ x0 : (((ι → ι → ι) → ι → ι) → (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι) → ι → ι . ∀ x1 : (ι → ι → ι → (ι → ι) → ι) → (ι → ι) → ((ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x2 : ((ι → ι → ι) → ι) → (ι → ((ι → ι) → ι) → ι) → ι → ι . ∀ x3 : (ι → ι) → ι → ι . (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 . Inj1 (x3 (λ x10 . x3 (λ x11 . Inj0 0) (x3 (λ x11 . 0) 0)) 0)) x5 = x5) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x3 (λ x9 . x2 (λ x10 : ι → ι → ι . x10 (Inj0 0) (x1 (λ x11 x12 x13 . λ x14 : ι → ι . x0 (λ x15 : (ι → ι → ι) → ι → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι → ι . 0) 0) (λ x11 . x2 (λ x12 : ι → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι . 0) 0) (λ x11 x12 : ι → ι . λ x13 . x11 0))) (λ x10 . λ x11 : (ι → ι) → ι . x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . x12 (λ x15 x16 . 0) (x0 (λ x15 : (ι → ι → ι) → ι → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι → ι . 0) 0)) (Inj0 0)) 0) (x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . x7) x6) = x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . Inj0 (Inj0 (x2 (λ x12 : ι → ι → ι . x12 0 0) (λ x12 . λ x13 : (ι → ι) → ι . 0) x7))) (x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . 0) x6)) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : (ι → ι) → ι → ι → ι . x2 (λ x9 : ι → ι → ι . x9 (setsum 0 (x3 (λ x10 . 0) (x9 0 0))) (setsum (x0 (λ x10 : (ι → ι → ι) → ι → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι → ι . 0) 0) (x1 (λ x10 x11 x12 . λ x13 : ι → ι . x10) (λ x10 . setsum 0 0) (λ x10 x11 : ι → ι . λ x12 . x0 (λ x13 : (ι → ι → ι) → ι → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 : ι → ι → ι . 0) 0)))) (λ x9 . λ x10 : (ι → ι) → ι . x1 (λ x11 x12 x13 . λ x14 : ι → ι . 0) (λ x11 . x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . x12 (λ x15 x16 . 0) 0) (x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . 0) (x2 (λ x12 : ι → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι . 0) 0))) (λ x11 x12 : ι → ι . λ x13 . setsum 0 (x1 (λ x14 x15 x16 . λ x17 : ι → ι . setsum 0 0) (λ x14 . x3 (λ x15 . 0) 0) (λ x14 x15 : ι → ι . λ x16 . x3 (λ x17 . 0) 0)))) (x6 (Inj1 (x6 (x3 (λ x9 . 0) 0)))) = Inj0 (setsum (Inj1 (x6 0)) 0)) ⟶ (∀ x4 : ι → ι → (ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x2 (λ x9 : ι → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι . Inj1 (Inj1 (Inj1 (setsum 0 0)))) x6 = Inj1 (Inj0 (x1 (λ x9 x10 x11 . λ x12 : ι → ι . x9) (λ x9 . 0) (λ x9 x10 : ι → ι . λ x11 . 0)))) ⟶ (∀ x4 : ι → ι . ∀ x5 : ι → (ι → ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 x10 x11 . λ x12 : ι → ι . setsum (x1 (λ x13 x14 x15 . λ x16 : ι → ι . x13) Inj0 (λ x13 x14 : ι → ι . λ x15 . 0)) (x1 (λ x13 x14 x15 . λ x16 : ι → ι . setsum (x1 (λ x17 x18 x19 . λ x20 : ι → ι . 0) (λ x17 . 0) (λ x17 x18 : ι → ι . λ x19 . 0)) (x1 (λ x17 x18 x19 . λ x20 : ι → ι . 0) (λ x17 . 0) (λ x17 x18 : ι → ι . λ x19 . 0))) (λ x13 . x10) (λ x13 x14 : ι → ι . λ x15 . setsum 0 (Inj0 0)))) (λ x9 . setsum (x2 (λ x10 : ι → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι . 0) (x0 (λ x10 : (ι → ι → ι) → ι → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι → ι . x10 (λ x13 x14 . 0) 0) 0)) (x5 (Inj1 x7) (λ x10 x11 . x1 (λ x12 x13 x14 . λ x15 : ι → ι . x3 (λ x16 . 0) 0) (λ x12 . 0) (λ x12 x13 : ι → ι . λ x14 . x11)))) (λ x9 x10 : ι → ι . λ x11 . x3 (λ x12 . x10 0) (x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . x14 (Inj1 0) (x14 0 0)) 0)) = x3 (λ x9 . x5 0 (λ x10 x11 . x11)) (setsum (Inj0 (x1 (λ x9 x10 x11 . λ x12 : ι → ι . x11) (λ x9 . x7) (λ x9 x10 : ι → ι . λ x11 . 0))) (setsum (x3 (λ x9 . Inj0 0) (x2 (λ x9 : ι → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι . 0) 0)) (x1 (λ x9 x10 x11 . λ x12 : ι → ι . x1 (λ x13 x14 x15 . λ x16 : ι → ι . 0) (λ x13 . 0) (λ x13 x14 : ι → ι . λ x15 . 0)) (λ x9 . 0) (λ x9 x10 : ι → ι . λ x11 . x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . 0) 0))))) ⟶ (∀ x4 : (ι → (ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x5 : ι → ι → (ι → ι) → ι . ∀ x6 x7 . x1 (λ x9 x10 x11 . λ x12 : ι → ι . x0 (λ x13 : (ι → ι → ι) → ι → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 : ι → ι → ι . Inj0 (setsum (Inj0 0) (x12 0))) 0) (λ x9 . 0) (λ x9 x10 : ι → ι . λ x11 . 0) = setsum 0 0) ⟶ (∀ x4 x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x7 : (((ι → ι) → ι → ι) → ι) → ι . x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . setsum (x1 (λ x12 x13 x14 . λ x15 : ι → ι . x14) (λ x12 . setsum (Inj0 0) (Inj0 0)) (λ x12 x13 : ι → ι . λ x14 . x0 (λ x15 : (ι → ι → ι) → ι → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι → ι . 0) (x11 0 0))) 0) (setsum (x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . x3 (λ x12 . setsum 0 0) 0) 0) 0) = x4) ⟶ (∀ x4 : (ι → ι → ι → ι) → ι . ∀ x5 : (ι → (ι → ι) → ι) → ι . ∀ x6 : (((ι → ι) → ι → ι) → ι) → (ι → ι) → ι . ∀ x7 . x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . 0) x7 = x7) ⟶ False (proof)Theorem 4089a.. : ∀ x0 : (ι → (((ι → ι) → ι → ι) → ι) → ι) → ι → ι . ∀ x1 : (ι → ι → ι) → ι → (ι → ι → ι → ι) → ((ι → ι) → ι → ι) → ι → ι . ∀ x2 : ((ι → ι) → (ι → (ι → ι) → ι → ι) → ι) → (ι → ι) → ι . ∀ x3 : (ι → ι → ι) → ι → ι . (∀ x4 x5 . ∀ x6 : ((ι → ι → ι) → ι) → ι . ∀ x7 . x3 (λ x9 x10 . x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . 0) (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . Inj1 (Inj1 0)) (x2 (λ x11 : ι → ι . λ x12 : ι → (ι → ι) → ι → ι . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . 0) 0) (λ x11 . x0 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . 0) 0)))) (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . x10 (λ x11 : ι → ι . λ x12 . 0)) (Inj0 (setsum 0 x4))) = setsum x4 (Inj0 (Inj0 0))) ⟶ (∀ x4 x5 x6 : ι → ι . ∀ x7 . x3 (λ x9 x10 . x7) 0 = x7) ⟶ (∀ x4 x5 x6 . ∀ x7 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι . x2 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . x1 (λ x11 x12 . 0) 0 (λ x11 x12 x13 . x12) (λ x11 : ι → ι . λ x12 . x2 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . x12) (λ x13 . setsum 0 (setsum 0 0))) 0) (λ x9 . x0 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι . x10) 0) = setsum 0 0) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → ι → ι . ∀ x7 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι . x2 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . x3 (λ x11 x12 . 0) (x6 (setsum (setsum 0 0) (Inj1 0)) (x1 (λ x11 x12 . 0) (setsum 0 0) (λ x11 x12 x13 . x11) (λ x11 : ι → ι . λ x12 . Inj1 0) (Inj1 0)))) (λ x9 . x2 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι → ι . setsum (Inj1 (x2 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . 0) (λ x12 . 0))) 0) (λ x10 . x3 (λ x11 x12 . 0) 0)) = x3 (λ x9 x10 . x1 (λ x11 x12 . x11) (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . x3 (λ x13 x14 . x1 (λ x15 x16 . 0) 0 (λ x15 x16 x17 . 0) (λ x15 : ι → ι . λ x16 . 0) 0) 0) (setsum (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . 0) 0) (x6 0 0))) (λ x11 x12 x13 . 0) (λ x11 : ι → ι . λ x12 . x12) (x3 (λ x11 x12 . 0) (x1 (λ x11 x12 . setsum 0 0) 0 (λ x11 x12 x13 . setsum 0 0) (λ x11 : ι → ι . λ x12 . x12) (x2 (λ x11 : ι → ι . λ x12 : ι → (ι → ι) → ι → ι . 0) (λ x11 . 0))))) (setsum x4 (x3 (λ x9 x10 . 0) (Inj1 0)))) ⟶ (∀ x4 : ((ι → ι) → ι) → (ι → ι → ι) → ι → ι . ∀ x5 : ι → ι → ι . ∀ x6 x7 . x1 (λ x9 x10 . x10) (Inj1 0) (λ x9 x10 x11 . x11) (λ x9 : ι → ι . λ x10 . 0) 0 = x6) ⟶ (∀ x4 : ((ι → ι) → ι) → ι → ι → ι . ∀ x5 . ∀ x6 : (ι → ι → ι → ι) → ι . ∀ x7 . x1 (λ x9 x10 . x1 (λ x11 x12 . x2 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . x0 (λ x15 . λ x16 : ((ι → ι) → ι → ι) → ι . x13 0) 0) (λ x13 . x13)) (x3 (λ x11 x12 . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . x12) x10) (x6 (λ x11 x12 x13 . 0))) (λ x11 x12 x13 . setsum (setsum x12 (setsum 0 0)) 0) (λ x11 : ι → ι . λ x12 . setsum 0 (Inj1 0)) (x3 (λ x11 x12 . setsum (Inj1 0) 0) (x3 (λ x11 x12 . x1 (λ x13 x14 . 0) 0 (λ x13 x14 x15 . 0) (λ x13 : ι → ι . λ x14 . 0) 0) (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . 0) 0)))) x7 (λ x9 x10 x11 . x1 (λ x12 x13 . 0) (x3 (λ x12 x13 . Inj0 0) (setsum x9 (Inj0 0))) (λ x12 x13 x14 . setsum (x3 (λ x15 x16 . Inj1 0) 0) 0) (λ x12 : ι → ι . λ x13 . x0 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι . 0) (setsum 0 0)) 0) (λ x9 : ι → ι . λ x10 . 0) (Inj0 (x3 (λ x9 x10 . 0) (Inj0 (Inj0 0)))) = Inj1 x5) ⟶ (∀ x4 : (((ι → ι) → ι) → ι) → ι . ∀ x5 x6 x7 . x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . x2 (λ x11 : ι → ι . λ x12 : ι → (ι → ι) → ι → ι . x11 (x2 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . setsum 0 0) (λ x13 . setsum 0 0))) (λ x11 . Inj0 x7)) (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . x10 (λ x11 : ι → ι . λ x12 . x2 (λ x13 : ι → ι . λ x14 : ι → (ι → ι) → ι → ι . setsum 0 0) (λ x13 . 0))) (x1 (λ x9 x10 . x6) (setsum (setsum 0 0) (x4 (λ x9 : (ι → ι) → ι . 0))) (λ x9 x10 x11 . 0) (λ x9 : ι → ι . λ x10 . 0) (Inj1 x7))) = setsum (x1 (λ x9 x10 . Inj1 (Inj0 x9)) (setsum (Inj0 (x3 (λ x9 x10 . 0) 0)) x7) (λ x9 x10 x11 . x3 (λ x12 x13 . x11) x7) (λ x9 : ι → ι . λ x10 . setsum (x1 (λ x11 x12 . x10) (setsum 0 0) (λ x11 x12 x13 . 0) (λ x11 : ι → ι . λ x12 . x9 0) x10) 0) (Inj0 0)) 0) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 x7 : ι → ι . x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . 0) (x6 (x5 (λ x9 : ι → ι . setsum (x9 0) (x5 (λ x10 : ι → ι . 0))))) = x6 (x1 (λ x9 x10 . x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . setsum 0 0) (x1 (λ x13 x14 . 0) 0 (λ x13 x14 x15 . 0) (λ x13 : ι → ι . λ x14 . 0) 0)) (x3 (λ x11 x12 . x9) 0)) (x7 (x2 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . Inj0 0) (λ x9 . Inj1 0))) (λ x9 x10 x11 . x1 (λ x12 x13 . x0 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι . x14) 0) (Inj0 (x0 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . 0) 0)) (λ x12 x13 x14 . 0) (λ x12 : ι → ι . λ x13 . 0) (Inj1 0)) (λ x9 : ι → ι . λ x10 . x2 (λ x11 : ι → ι . λ x12 : ι → (ι → ι) → ι → ι . x10) (λ x11 . x0 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . x12) 0)) 0)) ⟶ False (proof)Theorem 1335e.. : ∀ x0 : ((((ι → ι) → ι) → ι → ι) → ι) → (ι → ι) → ι → ι . ∀ x1 : (ι → ι → ι) → (ι → ((ι → ι) → ι) → ι) → (ι → ι) → ((ι → ι) → ι) → ι . ∀ x2 : (ι → ι → ι → ι → ι) → ι → ι → ι . ∀ x3 : (ι → ((ι → ι) → (ι → ι) → ι) → ι) → (((ι → ι → ι) → (ι → ι) → ι → ι) → ι) → ι . (∀ x4 . ∀ x5 : ι → (ι → ι) → (ι → ι) → ι . ∀ x6 : ((ι → ι) → (ι → ι) → ι) → ι . ∀ x7 . x3 (λ x9 . λ x10 : (ι → ι) → (ι → ι) → ι . x9) (λ x9 : (ι → ι → ι) → (ι → ι) → ι → ι . x1 (λ x10 . Inj1) (λ x10 . λ x11 : (ι → ι) → ι . 0) (λ x10 . x0 (λ x11 : ((ι → ι) → ι) → ι → ι . 0) (setsum (setsum 0 0)) x7) (λ x10 : ι → ι . setsum (x0 (λ x11 : ((ι → ι) → ι) → ι → ι . x10 0) (λ x11 . x2 (λ x12 x13 x14 x15 . 0) 0 0) (x9 (λ x11 x12 . 0) (λ x11 . 0) 0)) (x10 (setsum 0 0)))) = x1 (λ x9 x10 . Inj0 (setsum (x0 (λ x11 : ((ι → ι) → ι) → ι → ι . x1 (λ x12 x13 . 0) (λ x12 . λ x13 : (ι → ι) → ι . 0) (λ x12 . 0) (λ x12 : ι → ι . 0)) (λ x11 . Inj1 0) 0) (setsum 0 (setsum 0 0)))) (λ x9 . λ x10 : (ι → ι) → ι . x2 (λ x11 x12 x13 x14 . Inj0 (x2 (λ x15 x16 x17 x18 . x18) (setsum 0 0) (x2 (λ x15 x16 x17 x18 . 0) 0 0))) (setsum (Inj0 (setsum 0 0)) 0) x7) (λ x9 . Inj1 0) (λ x9 : ι → ι . Inj1 (x5 (Inj0 (x2 (λ x10 x11 x12 x13 . 0) 0 0)) (λ x10 . setsum (Inj0 0) (x3 (λ x11 . λ x12 : (ι → ι) → (ι → ι) → ι . 0) (λ x11 : (ι → ι → ι) → (ι → ι) → ι → ι . 0))) (λ x10 . Inj0 (setsum 0 0))))) ⟶ (∀ x4 : ((ι → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x5 . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 . x3 (λ x9 . λ x10 : (ι → ι) → (ι → ι) → ι . x6 (setsum (x0 (λ x11 : ((ι → ι) → ι) → ι → ι . 0) (λ x11 . x10 (λ x12 . 0) (λ x12 . 0)) (x2 (λ x11 x12 x13 x14 . 0) 0 0)) (setsum x9 (x6 0 0 0 0))) (x0 (λ x11 : ((ι → ι) → ι) → ι → ι . x7) (λ x11 . 0) 0) (x2 (λ x11 x12 x13 x14 . x11) (setsum (x1 (λ x11 x12 . 0) (λ x11 . λ x12 : (ι → ι) → ι . 0) (λ x11 . 0) (λ x11 : ι → ι . 0)) (x6 0 0 0 0)) (x6 (x2 (λ x11 x12 x13 x14 . 0) 0 0) x9 (Inj0 0) (x2 (λ x11 x12 x13 x14 . 0) 0 0))) (Inj0 0)) (λ x9 : (ι → ι → ι) → (ι → ι) → ι → ι . Inj1 (x0 (λ x10 : ((ι → ι) → ι) → ι → ι . x3 (λ x11 . λ x12 : (ι → ι) → (ι → ι) → ι . setsum 0 0) (λ x11 : (ι → ι → ι) → (ι → ι) → ι → ι . Inj1 0)) (λ x10 . x2 (λ x11 x12 x13 x14 . x2 (λ x15 x16 x17 x18 . 0) 0 0) (x2 (λ x11 x12 x13 x14 . 0) 0 0) x7) 0)) = x6 (x4 (λ x9 : ι → ι . setsum (x0 (λ x10 : ((ι → ι) → ι) → ι → ι . 0) (λ x10 . Inj0 0) 0) (setsum x7 (x1 (λ x10 x11 . 0) (λ x10 . λ x11 : (ι → ι) → ι . 0) (λ x10 . 0) (λ x10 : ι → ι . 0)))) (λ x9 : ι → ι . x1 (λ x10 x11 . x0 (λ x12 : ((ι → ι) → ι) → ι → ι . x9 0) (λ x12 . Inj1 0) (x3 (λ x12 . λ x13 : (ι → ι) → (ι → ι) → ι . 0) (λ x12 : (ι → ι → ι) → (ι → ι) → ι → ι . 0))) (λ x10 . λ x11 : (ι → ι) → ι . x7) (λ x10 . 0) (λ x10 : ι → ι . Inj0 (x0 (λ x11 : ((ι → ι) → ι) → ι → ι . 0) (λ x11 . 0) 0)))) (setsum (x0 (λ x9 : ((ι → ι) → ι) → ι → ι . 0) (λ x9 . x6 (x0 (λ x10 : ((ι → ι) → ι) → ι → ι . 0) (λ x10 . 0) 0) (x0 (λ x10 : ((ι → ι) → ι) → ι → ι . 0) (λ x10 . 0) 0) x5 x7) (Inj0 (Inj1 0))) (Inj0 (x0 (λ x9 : ((ι → ι) → ι) → ι → ι . x9 (λ x10 : ι → ι . 0) 0) (λ x9 . 0) x5))) (Inj1 (x2 (λ x9 x10 x11 x12 . 0) (x6 (x3 (λ x9 . λ x10 : (ι → ι) → (ι → ι) → ι . 0) (λ x9 : (ι → ι → ι) → (ι → ι) → ι → ι . 0)) (x1 (λ x9 x10 . 0) (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 . 0) (λ x9 : ι → ι . 0)) 0 (x1 (λ x9 x10 . 0) (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 . 0) (λ x9 : ι → ι . 0))) (x2 (λ x9 x10 x11 x12 . x11) (x6 0 0 0 0) (Inj1 0)))) (setsum (x3 (λ x9 . λ x10 : (ι → ι) → (ι → ι) → ι . x10 (λ x11 . x2 (λ x12 x13 x14 x15 . 0) 0 0) (λ x11 . 0)) (λ x9 : (ι → ι → ι) → (ι → ι) → ι → ι . x5)) (x2 (λ x9 x10 x11 x12 . setsum (x2 (λ x13 x14 x15 x16 . 0) 0 0) x11) 0 (x2 (λ x9 x10 x11 x12 . x11) 0 x7)))) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 : (((ι → ι) → ι) → ι) → ι . ∀ x6 . ∀ x7 : (((ι → ι) → ι) → ι) → ι . x2 (λ x9 x10 x11 x12 . x10) 0 0 = x7 (λ x9 : (ι → ι) → ι . x3 (λ x10 . λ x11 : (ι → ι) → (ι → ι) → ι . 0) (λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . x9 (λ x11 . 0)))) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 x6 x7 . x2 (λ x9 x10 x11 x12 . x0 (λ x13 : ((ι → ι) → ι) → ι → ι . x3 (λ x14 . λ x15 : (ι → ι) → (ι → ι) → ι . Inj0 (setsum 0 0)) (λ x14 : (ι → ι → ι) → (ι → ι) → ι → ι . setsum 0 (setsum 0 0))) (λ x13 . x13) x10) 0 x6 = Inj1 0) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x1 (λ x9 x10 . setsum 0 (x2 (λ x11 x12 x13 x14 . setsum (setsum 0 0) (Inj0 0)) (setsum 0 0) 0)) (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 . x5 (setsum (x2 (λ x10 x11 x12 x13 . x13) 0 (x0 (λ x10 : ((ι → ι) → ι) → ι → ι . 0) (λ x10 . 0) 0)) (x5 (Inj1 0)))) (λ x9 : ι → ι . 0) = Inj1 (x5 0)) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x1 (λ x9 x10 . 0) (λ x9 . λ x10 : (ι → ι) → ι . setsum (Inj1 0) (x0 (λ x11 : ((ι → ι) → ι) → ι → ι . x10 (λ x12 . x11 (λ x13 : ι → ι . 0) 0)) (λ x11 . x1 (λ x12 x13 . x11) (λ x12 . λ x13 : (ι → ι) → ι . x11) (λ x12 . 0) (λ x12 : ι → ι . 0)) (Inj0 (x1 (λ x11 x12 . 0) (λ x11 . λ x12 : (ι → ι) → ι . 0) (λ x11 . 0) (λ x11 : ι → ι . 0))))) (λ x9 . setsum 0 0) (λ x9 : ι → ι . 0) = x6) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 x7 . x0 (λ x9 : ((ι → ι) → ι) → ι → ι . x2 (λ x10 x11 x12 x13 . 0) x6 (x2 (λ x10 x11 x12 x13 . setsum 0 (Inj1 0)) (setsum (Inj1 0) (Inj0 0)) 0)) (λ x9 . x3 (λ x10 . λ x11 : (ι → ι) → (ι → ι) → ι . Inj0 (x3 (λ x12 . λ x13 : (ι → ι) → (ι → ι) → ι . 0) (λ x12 : (ι → ι → ι) → (ι → ι) → ι → ι . x2 (λ x13 x14 x15 x16 . 0) 0 0))) (λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . 0)) (x2 (λ x9 x10 x11 x12 . 0) 0 x4) = x2 (λ x9 x10 x11 x12 . setsum (setsum x10 0) 0) (x1 (λ x9 x10 . x6) (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 . x6) (λ x9 : ι → ι . x2 (λ x10 x11 x12 x13 . x0 (λ x14 : ((ι → ι) → ι) → ι → ι . 0) (λ x14 . Inj1 0) x11) (x1 (λ x10 x11 . setsum 0 0) (λ x10 . λ x11 : (ι → ι) → ι . x7) (λ x10 . Inj1 0) (λ x10 : ι → ι . 0)) 0)) (setsum (x3 (λ x9 . λ x10 : (ι → ι) → (ι → ι) → ι . Inj1 (Inj1 0)) (λ x9 : (ι → ι → ι) → (ι → ι) → ι → ι . Inj1 (Inj0 0))) (setsum 0 0))) ⟶ (∀ x4 x5 x6 x7 . x0 (λ x9 : ((ι → ι) → ι) → ι → ι . x7) (λ x9 . x9) (setsum (x0 (λ x9 : ((ι → ι) → ι) → ι → ι . x6) (λ x9 . x3 (λ x10 . λ x11 : (ι → ι) → (ι → ι) → ι . Inj1 0) (λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . setsum 0 0)) (setsum 0 0)) 0) = Inj0 0) ⟶ False (proof)Theorem 06556.. : ∀ x0 : ((ι → ι) → ((ι → ι → ι) → ι → ι) → ι → (ι → ι) → ι) → (ι → ι → (ι → ι) → ι) → ι . ∀ x1 : (ι → (((ι → ι) → ι → ι) → ι → ι → ι) → ι) → ι → ι . ∀ x2 : (ι → ι → ι) → (ι → ι) → ι → ι → ι → ι . ∀ x3 : ((((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι) → ι) → (ι → ι) → ι . (∀ x4 : (ι → ι → ι) → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι → ι . ∀ x7 : ((ι → ι → ι) → ι) → (ι → ι) → ι → ι → ι . x3 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . setsum (x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι) → ι → ι . λ x12 . λ x13 : ι → ι . x1 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum 0 0) (Inj1 0)) (λ x10 x11 . λ x12 : ι → ι . 0)) (x1 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (x2 (λ x10 x11 . x7 (λ x12 : ι → ι → ι . 0) (λ x12 . 0) 0 0) (λ x10 . 0) (x6 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0) 0) (x1 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) 0) (Inj0 0)))) (λ x9 . x9) = Inj1 0) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . 0) x6 = x6 (setsum (x2 (λ x9 x10 . x1 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (setsum 0 0)) (λ x9 . x9) x5 0 0) (x1 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . x10 (λ x11 : ι → ι . λ x12 . 0) x9 (x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0)) 0))) ⟶ (∀ x4 . ∀ x5 : (ι → (ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : ι → ι . x2 (λ x9 x10 . 0) (λ x9 . x2 (λ x10 x11 . x2 (λ x12 x13 . 0) (λ x12 . 0) (x0 (λ x12 : ι → ι . λ x13 : (ι → ι → ι) → ι → ι . λ x14 . λ x15 : ι → ι . setsum 0 0) (λ x12 x13 . λ x14 : ι → ι . x0 (λ x15 : ι → ι . λ x16 : (ι → ι → ι) → ι → ι . λ x17 . λ x18 : ι → ι . 0) (λ x15 x16 . λ x17 : ι → ι . 0))) (x7 x11) x11) (λ x10 . x9) (x1 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (x2 (λ x10 x11 . Inj1 0) (λ x10 . x1 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) 0) (x3 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . 0) (λ x10 . 0)) (Inj1 0) (x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι) → ι → ι . λ x12 . λ x13 : ι → ι . 0) (λ x10 x11 . λ x12 : ι → ι . 0)))) (x7 0) 0) x4 (x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . Inj0 0) (λ x9 x10 . λ x11 : ι → ι . Inj0 (setsum (Inj0 0) (x1 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) 0)))) (setsum 0 (x7 0)) = x4) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι → ι → ι → ι . ∀ x6 : ((ι → ι → ι) → ι → ι) → ι . ∀ x7 : ι → ι . x2 (λ x9 x10 . x2 (λ x11 x12 . 0) (λ x11 . x9) (x7 0) (x6 (λ x11 : ι → ι → ι . λ x12 . setsum 0 (x0 (λ x13 : ι → ι . λ x14 : (ι → ι → ι) → ι → ι . λ x15 . λ x16 : ι → ι . 0) (λ x13 x14 . λ x15 : ι → ι . 0)))) 0) (λ x9 . 0) (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . 0) 0 (x2 (λ x9 x10 . x3 (λ x11 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . x10) (λ x11 . Inj0 0)) (λ x9 . x3 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . x6 (λ x11 : ι → ι → ι . λ x12 . 0)) (λ x10 . Inj0 0)) (x7 0) 0 (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . setsum 0 0) (Inj1 0) (Inj0 0) 0)) (Inj0 (setsum (Inj1 0) (x7 0)))) (Inj1 (setsum 0 (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . setsum 0 0) 0 (setsum 0 0) (setsum 0 0)))) (x7 (Inj1 0)) = x7 (Inj0 0)) ⟶ (∀ x4 . ∀ x5 : ι → ι → (ι → ι) → ι → ι . ∀ x6 : ((ι → ι) → ι → ι) → ι . ∀ x7 . x1 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum (setsum (setsum 0 0) (setsum (x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0) (x3 (λ x11 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . 0) (λ x11 . 0)))) (setsum (setsum (x0 (λ x11 : ι → ι . λ x12 : (ι → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . 0) (λ x11 x12 . λ x13 : ι → ι . 0)) 0) (x10 (λ x11 : ι → ι . λ x12 . Inj0 0) (x10 (λ x11 : ι → ι . λ x12 . 0) 0 0) (Inj1 0)))) (x2 (λ x9 x10 . 0) (λ x9 . x6 (λ x10 : ι → ι . λ x11 . setsum (Inj1 0) (x2 (λ x12 x13 . 0) (λ x12 . 0) 0 0 0))) (setsum x4 (Inj1 (setsum 0 0))) 0 (Inj0 0)) = x2 (λ x9 x10 . setsum x7 (Inj1 x7)) (λ x9 . x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι) → ι → ι . λ x12 . λ x13 : ι → ι . Inj1 0) (λ x10 x11 . λ x12 : ι → ι . 0)) (Inj0 0) (Inj0 (x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . Inj1 0) (λ x9 x10 . λ x11 : ι → ι . Inj0 (x2 (λ x12 x13 . 0) (λ x12 . 0) 0 0 0)))) (setsum (Inj1 (x6 (λ x9 : ι → ι . λ x10 . Inj1 0))) (setsum (x3 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . x9 (λ x10 : ι → ι → ι . λ x11 : ι → ι . 0) 0 0) (λ x9 . Inj1 0)) (setsum 0 0)))) ⟶ (∀ x4 : ι → (ι → ι → ι) → ι → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι → ι) → ι → ι) → ι . x1 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . setsum (x1 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . x9) (setsum (x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0) (x1 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) 0))) 0) (x2 (λ x9 x10 . x10) (λ x9 . x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι) → ι → ι . λ x12 . λ x13 : ι → ι . x12) (λ x10 x11 . λ x12 : ι → ι . x3 (λ x13 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . x13 (λ x14 : ι → ι → ι . λ x15 : ι → ι . 0) 0 0) (λ x13 . 0))) x5 (Inj1 (Inj0 0)) (setsum 0 (Inj1 (x2 (λ x9 x10 . 0) (λ x9 . 0) 0 0 0)))) = x2 (λ x9 x10 . Inj0 0) (λ x9 . x1 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . x7 (λ x12 : ι → ι → ι . λ x13 . x11 (λ x14 : ι → ι . λ x15 . x2 (λ x16 x17 . 0) (λ x16 . 0) 0 0 0) 0 (x1 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) 0))) 0) (Inj0 (x3 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . setsum (Inj0 0) (setsum 0 0)) (λ x9 . x3 (λ x10 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . setsum 0 0) (λ x10 . x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0)))) (setsum (setsum x5 (x1 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . Inj0 0) (x2 (λ x9 x10 . 0) (λ x9 . 0) 0 0 0))) (x1 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . Inj0 (x0 (λ x11 : ι → ι . λ x12 : (ι → ι → ι) → ι → ι . λ x13 . λ x14 : ι → ι . 0) (λ x11 x12 . λ x13 : ι → ι . 0))) x5)) (setsum (setsum x6 (x2 (λ x9 x10 . x10) (λ x9 . x7 (λ x10 : ι → ι → ι . λ x11 . 0)) (x4 0 (λ x9 x10 . 0) 0) (Inj0 0) (x3 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . 0) (λ x9 . 0)))) (x4 (x3 (λ x9 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . 0) (λ x9 . x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι) → ι → ι . λ x12 . λ x13 : ι → ι . 0) (λ x10 x11 . λ x12 : ι → ι . 0))) (λ x9 . x1 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . x11 (λ x12 : ι → ι . λ x13 . 0) 0 0)) x5))) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . 0) (λ x9 x10 . λ x11 : ι → ι . x0 (λ x12 : ι → ι . λ x13 : (ι → ι → ι) → ι → ι . λ x14 . λ x15 : ι → ι . x2 (λ x16 x17 . x15 x14) (λ x16 . x16) 0 (x15 (x3 (λ x16 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι . 0) (λ x16 . 0))) (x0 (λ x16 : ι → ι . λ x17 : (ι → ι → ι) → ι → ι . λ x18 . λ x19 : ι → ι . Inj0 0) (λ x16 x17 . λ x18 : ι → ι . x1 (λ x19 . λ x20 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) 0))) (λ x12 x13 . λ x14 : ι → ι . Inj1 (x0 (λ x15 : ι → ι . λ x16 : (ι → ι → ι) → ι → ι . λ x17 . λ x18 : ι → ι . 0) (λ x15 x16 . λ x17 : ι → ι . x14 0)))) = x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . setsum (x0 (λ x13 : ι → ι . λ x14 : (ι → ι → ι) → ι → ι . λ x15 . λ x16 : ι → ι . 0) (λ x13 x14 . λ x15 : ι → ι . 0)) 0) (λ x9 x10 . λ x11 : ι → ι . setsum 0 0)) ⟶ (∀ x4 x5 x6 x7 . x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι) → ι → ι . λ x11 . λ x12 : ι → ι . 0) (λ x9 x10 . λ x11 : ι → ι . 0) = x4) ⟶ False (proof)Theorem c4ca7.. : ∀ x0 : (((ι → ι) → ι) → ι) → (ι → ι) → ι . ∀ x1 : (((((ι → ι) → ι → ι) → ι) → ι) → ι → ι) → ι → ι → ι → (ι → ι) → ι → ι . ∀ x2 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι . ∀ x3 : (((((ι → ι) → ι) → (ι → ι) → ι) → ι) → ι) → (ι → ι → (ι → ι) → ι → ι) → ι . (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 . ∀ x7 : (ι → ι) → (ι → ι) → ι . x3 (λ x9 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . x7 (λ x10 . 0) (λ x10 . 0)) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x1 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι . λ x14 . x14) (x0 (λ x13 : (ι → ι) → ι . 0) (λ x13 . Inj0 (setsum 0 0))) 0 (x3 (λ x13 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . x2 (λ x14 : (ι → ι) → ι . x13 (λ x15 : (ι → ι) → ι . λ x16 : ι → ι . 0)) (λ x14 x15 . x3 (λ x16 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x16 x17 . λ x18 : ι → ι . λ x19 . 0))) (λ x13 x14 . λ x15 : ι → ι . x1 (λ x16 : (((ι → ι) → ι → ι) → ι) → ι . λ x17 . x1 (λ x18 : (((ι → ι) → ι → ι) → ι) → ι . λ x19 . 0) 0 0 0 (λ x18 . 0) 0) x13 x14 (x0 (λ x16 : (ι → ι) → ι . 0) (λ x16 . 0)) (λ x16 . x14))) (λ x13 . 0) (x0 (λ x13 : (ι → ι) → ι . 0) (λ x13 . x12))) = setsum (x5 0 (x5 (Inj0 (x0 (λ x9 : (ι → ι) → ι . 0) (λ x9 . 0))) 0)) (setsum (x2 (λ x9 : (ι → ι) → ι . 0) (λ x9 x10 . setsum 0 x9)) (setsum (x7 (λ x9 . x3 (λ x10 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x10 x11 . λ x12 : ι → ι . λ x13 . 0)) (λ x9 . Inj0 0)) (setsum 0 x4)))) ⟶ (∀ x4 : (ι → ι) → ((ι → ι) → ι → ι) → ι . ∀ x5 : ((ι → ι → ι) → ι → ι → ι) → ι . ∀ x6 : (ι → ι → ι) → (ι → ι → ι) → ι . ∀ x7 : ι → ι . x3 (λ x9 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . 0) = setsum (x7 (Inj1 (x0 (λ x9 : (ι → ι) → ι . Inj0 0) (λ x9 . x9)))) (setsum (Inj0 (x2 (λ x9 : (ι → ι) → ι . 0) (λ x9 x10 . Inj1 0))) (x4 (λ x9 . setsum (x6 (λ x10 x11 . 0) (λ x10 x11 . 0)) 0) (λ x9 : ι → ι . λ x10 . Inj1 (x1 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 . 0) 0 0 0 (λ x11 . 0) 0))))) ⟶ (∀ x4 : ((ι → ι → ι) → (ι → ι) → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x2 (λ x9 : (ι → ι) → ι . 0) (λ x9 x10 . x7 (x1 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 . 0) (x3 (λ x11 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . Inj1 0) (λ x11 x12 . λ x13 : ι → ι . λ x14 . Inj0 0)) 0 x9 (λ x11 . 0) (setsum (setsum 0 0) 0))) = Inj0 (setsum x5 (x2 (λ x9 : (ι → ι) → ι . x5) (λ x9 x10 . x10)))) ⟶ (∀ x4 : ι → ι → ι → ι → ι . ∀ x5 x6 x7 . x2 (λ x9 : (ι → ι) → ι . 0) (λ x9 x10 . Inj0 0) = x6) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι → ι . ∀ x7 . x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 . x6 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . λ x13 . 0) (x1 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 . setsum (setsum 0 0) 0) x7 (x2 (λ x11 : (ι → ι) → ι . x1 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι . λ x13 . 0) 0 0 0 (λ x12 . 0) 0) (λ x11 x12 . 0)) x7 (λ x11 . x9 (λ x12 : (ι → ι) → ι → ι . x0 (λ x13 : (ι → ι) → ι . 0) (λ x13 . 0))) 0)) (x4 (Inj0 0) (setsum 0 x7)) (x4 (x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 . x1 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 . Inj1 0) (x2 (λ x11 : (ι → ι) → ι . 0) (λ x11 x12 . 0)) x10 (setsum 0 0) (λ x11 . x3 (λ x12 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x12 x13 . λ x14 : ι → ι . λ x15 . 0)) (x3 (λ x11 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x11 x12 . λ x13 : ι → ι . λ x14 . 0))) 0 (setsum (x0 (λ x9 : (ι → ι) → ι . 0) (λ x9 . 0)) (Inj0 0)) 0 (λ x9 . x6 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . x0 (λ x13 : (ι → ι) → ι . 0) (λ x13 . 0)) 0) (x4 0 (setsum 0 0))) (Inj1 (x2 (λ x9 : (ι → ι) → ι . x5) (λ x9 x10 . Inj1 0)))) (x6 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . setsum (x9 (λ x12 . 0)) (x1 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι . λ x13 . 0) 0 x11 0 (λ x12 . x11) (setsum 0 0))) (Inj0 0)) (λ x9 . x6 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . x9) (x0 (λ x10 : (ι → ι) → ι . x10 (λ x11 . x3 (λ x12 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x12 x13 . λ x14 : ι → ι . λ x15 . 0))) (λ x10 . 0))) 0 = Inj1 (x0 (λ x9 : (ι → ι) → ι . x2 (λ x10 : (ι → ι) → ι . x0 (λ x11 : (ι → ι) → ι . 0) (λ x11 . x1 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι . λ x13 . 0) 0 0 0 (λ x12 . 0) 0)) (λ x10 x11 . x2 (λ x12 : (ι → ι) → ι . x12 (λ x13 . 0)) (λ x12 x13 . Inj1 0))) (λ x9 . x3 (λ x10 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . x7) (λ x10 x11 . λ x12 : ι → ι . λ x13 . x12 0)))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 . x2 (λ x11 : (ι → ι) → ι . x9 (λ x12 : (ι → ι) → ι → ι . x11 (λ x13 . Inj1 0))) (λ x11 x12 . x1 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι . λ x14 . setsum (setsum 0 0) (x13 (λ x15 : (ι → ι) → ι → ι . 0))) 0 x10 (x2 (λ x13 : (ι → ι) → ι . x12) (λ x13 x14 . x3 (λ x15 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x15 x16 . λ x17 : ι → ι . λ x18 . 0))) (λ x13 . x1 (λ x14 : (((ι → ι) → ι → ι) → ι) → ι . λ x15 . Inj1 0) (Inj1 0) x11 0 (λ x14 . x14) (setsum 0 0)) (x3 (λ x13 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . Inj0 0) (λ x13 x14 . λ x15 : ι → ι . λ x16 . x1 (λ x17 : (((ι → ι) → ι → ι) → ι) → ι . λ x18 . 0) 0 0 0 (λ x17 . 0) 0)))) (setsum x4 x5) (x2 (λ x9 : (ι → ι) → ι . setsum 0 0) (λ x9 x10 . Inj0 0)) (x0 (λ x9 : (ι → ι) → ι . 0) (λ x9 . Inj0 (x6 x9))) (λ x9 . x5) 0 = Inj0 (setsum (x3 (λ x9 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . setsum 0 (Inj0 0)) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x0 (λ x13 : (ι → ι) → ι . 0) (λ x13 . x3 (λ x14 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x14 x15 . λ x16 : ι → ι . λ x17 . 0)))) (x0 (λ x9 : (ι → ι) → ι . 0) (λ x9 . x9)))) ⟶ (∀ x4 : (ι → ι → ι → ι) → ι → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι . ∀ x6 : (ι → ι) → ι . ∀ x7 : ι → ((ι → ι) → ι → ι) → ι . x0 (λ x9 : (ι → ι) → ι . x7 (x5 (λ x10 : (ι → ι) → ι → ι . λ x11 x12 . Inj0 (x1 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι . λ x14 . 0) 0 0 0 (λ x13 . 0) 0))) (λ x10 : ι → ι . Inj0)) (λ x9 . 0) = x7 (x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 . 0) (Inj0 (x2 (λ x9 : (ι → ι) → ι . x1 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι . λ x11 . 0) 0 0 0 (λ x10 . 0) 0) (λ x9 x10 . x10))) (x7 (Inj0 (x0 (λ x9 : (ι → ι) → ι . 0) (λ x9 . 0))) (λ x9 : ι → ι . λ x10 . 0)) 0 (λ x9 . x6 (λ x10 . x3 (λ x11 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . x3 (λ x12 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x12 x13 . λ x14 : ι → ι . λ x15 . 0)) (λ x11 x12 . λ x13 : ι → ι . λ x14 . 0))) (x0 (λ x9 : (ι → ι) → ι . x5 (λ x10 : (ι → ι) → ι → ι . λ x11 x12 . x11)) (λ x9 . x5 (λ x10 : (ι → ι) → ι → ι . λ x11 x12 . 0)))) (λ x9 : ι → ι . λ x10 . x7 (x1 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 . x10) (x9 (x0 (λ x11 : (ι → ι) → ι . 0) (λ x11 . 0))) (x9 (Inj1 0)) 0 (λ x11 . x3 (λ x12 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . setsum 0 0) (λ x12 x13 . λ x14 : ι → ι . λ x15 . Inj0 0)) 0) (λ x11 : ι → ι . λ x12 . 0))) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → ((ι → ι) → ι) → ι . x0 (λ x9 : (ι → ι) → ι . Inj0 (x9 (λ x10 . 0))) (λ x9 . x7 (Inj0 0) (λ x10 : ι → ι . x7 0 (λ x11 : ι → ι . x9))) = x7 (Inj0 (Inj1 (setsum 0 (x0 (λ x9 : (ι → ι) → ι . 0) (λ x9 . 0))))) (λ x9 : ι → ι . Inj0 (x7 (setsum (x9 0) (Inj0 0)) (λ x10 : ι → ι . x1 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 . setsum 0 0) (x3 (λ x11 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . 0) (λ x11 x12 . λ x13 : ι → ι . λ x14 . 0)) 0 (x0 (λ x11 : (ι → ι) → ι . 0) (λ x11 . 0)) (λ x11 . 0) (Inj1 0))))) ⟶ False (proof)Theorem 0045e.. : ∀ x0 : (ι → (((ι → ι) → ι → ι) → ι) → ι) → ι → ι → ((ι → ι) → ι → ι) → ι . ∀ x1 : (ι → ι → (ι → ι → ι) → ι) → ι → ι . ∀ x2 : (ι → (ι → (ι → ι) → ι → ι) → ι → ι → ι) → (ι → (ι → ι → ι) → ι → ι → ι) → ι → ι . ∀ x3 : (ι → ι → ι → ι) → ((((ι → ι) → ι) → (ι → ι) → ι → ι) → (ι → ι → ι) → ι) → ι . (∀ x4 . ∀ x5 : ((ι → ι) → ι → ι → ι) → ι → ι → ι . ∀ x6 x7 . x3 (λ x9 x10 x11 . 0) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 : ι → ι → ι . setsum 0 (setsum (x2 (λ x11 . λ x12 : ι → (ι → ι) → ι → ι . λ x13 x14 . Inj1 0) (λ x11 . λ x12 : ι → ι → ι . λ x13 x14 . Inj1 0) (setsum 0 0)) (setsum (setsum 0 0) (x1 (λ x11 x12 . λ x13 : ι → ι → ι . 0) 0)))) = x7) ⟶ (∀ x4 . ∀ x5 : (ι → (ι → ι) → ι → ι) → ι . ∀ x6 x7 . x3 (λ x9 x10 x11 . 0) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 : ι → ι → ι . x1 (λ x11 x12 . λ x13 : ι → ι → ι . setsum 0 (Inj0 (x13 0 0))) (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . x3 (λ x13 x14 x15 . Inj1 0) (λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x14 : ι → ι → ι . x13 (λ x15 : ι → ι . 0) (λ x15 . 0) 0)) (Inj1 (setsum 0 0)) (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x13 : ι → ι . λ x14 . 0)) (x2 (λ x11 . λ x12 : ι → (ι → ι) → ι → ι . λ x13 x14 . 0) (λ x11 . λ x12 : ι → ι → ι . λ x13 x14 . 0) 0) (setsum 0 0) (λ x11 : ι → ι . λ x12 . 0)) (λ x11 : ι → ι . λ x12 . setsum 0 0))) = Inj0 (Inj0 0)) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 x6 x7 . x2 (λ x9 . λ x10 : ι → (ι → ι) → ι → ι . λ x11 x12 . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . x0 (λ x15 . λ x16 : ((ι → ι) → ι → ι) → ι . setsum (setsum 0 0) (x0 (λ x17 . λ x18 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x17 : ι → ι . λ x18 . 0))) 0 (x14 (λ x15 : ι → ι . λ x16 . x16)) (λ x15 : ι → ι . λ x16 . 0)) (x1 (λ x13 x14 . λ x15 : ι → ι → ι . setsum 0 (x3 (λ x16 x17 x18 . 0) (λ x16 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x17 : ι → ι → ι . 0))) x11) (x10 (x2 (λ x13 . λ x14 : ι → (ι → ι) → ι → ι . λ x15 x16 . x15) (λ x13 . λ x14 : ι → ι → ι . λ x15 x16 . x1 (λ x17 x18 . λ x19 : ι → ι → ι . 0) 0) (setsum 0 0)) (λ x13 . 0) x11) (λ x13 : ι → ι . λ x14 . x3 (λ x15 x16 x17 . x15) (λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x16 : ι → ι → ι . 0))) (λ x9 . λ x10 : ι → ι → ι . λ x11 x12 . 0) x7 = x7) ⟶ (∀ x4 : ι → ι . ∀ x5 : ι → (ι → ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x2 (λ x9 . λ x10 : ι → (ι → ι) → ι → ι . λ x11 x12 . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . x2 (λ x15 . λ x16 : ι → (ι → ι) → ι → ι . λ x17 x18 . x2 (λ x19 . λ x20 : ι → (ι → ι) → ι → ι . λ x21 x22 . x19) (λ x19 . λ x20 : ι → ι → ι . λ x21 x22 . x0 (λ x23 . λ x24 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x23 : ι → ι . λ x24 . 0)) 0) (λ x15 . λ x16 : ι → ι → ι . λ x17 x18 . setsum 0 0) x13) (Inj1 0) x11 (λ x13 : ι → ι . λ x14 . setsum x14 (setsum 0 (x13 0)))) (λ x9 . λ x10 : ι → ι → ι . λ x11 x12 . Inj1 x9) (x3 (λ x9 x10 x11 . x3 (λ x12 x13 x14 . x1 (λ x15 x16 . λ x17 : ι → ι → ι . x15) (setsum 0 0)) (λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x13 : ι → ι → ι . x13 (x0 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x14 : ι → ι . λ x15 . 0)) (x13 0 0))) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 : ι → ι → ι . x3 (λ x11 x12 x13 . Inj0 0) (λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x12 : ι → ι → ι . x11 (λ x13 : ι → ι . setsum 0 0) (λ x13 . x13) 0))) = Inj0 (setsum 0 0)) ⟶ (∀ x4 : (ι → ι → ι) → ι . ∀ x5 x6 x7 . x1 (λ x9 x10 . λ x11 : ι → ι → ι . 0) (setsum (setsum x7 (x3 (λ x9 x10 x11 . x0 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x12 : ι → ι . λ x13 . 0)) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 : ι → ι → ι . setsum 0 0))) 0) = setsum (x4 (λ x9 x10 . x7)) (x3 (λ x9 x10 x11 . 0) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 : ι → ι → ι . setsum (x9 (λ x11 : ι → ι . x0 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x12 : ι → ι . λ x13 . 0)) (λ x11 . x1 (λ x12 x13 . λ x14 : ι → ι → ι . 0) 0) (setsum 0 0)) (setsum (x10 0 0) 0)))) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : (ι → ι) → ι . ∀ x7 : ((ι → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι . x1 (λ x9 x10 . λ x11 : ι → ι → ι . x2 (λ x12 . λ x13 : ι → (ι → ι) → ι → ι . λ x14 x15 . Inj0 (Inj1 0)) (λ x12 . λ x13 : ι → ι → ι . λ x14 x15 . 0) (Inj1 0)) 0 = x2 (λ x9 . λ x10 : ι → (ι → ι) → ι → ι . λ x11 x12 . x12) (λ x9 . λ x10 : ι → ι → ι . λ x11 x12 . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . x1 (λ x15 x16 . λ x17 : ι → ι → ι . 0) (x2 (λ x15 . λ x16 : ι → (ι → ι) → ι → ι . λ x17 x18 . 0) (λ x15 . λ x16 : ι → ι → ι . λ x17 x18 . 0) 0)) (Inj0 (x2 (λ x13 . λ x14 : ι → (ι → ι) → ι → ι . λ x15 x16 . setsum 0 0) (λ x13 . λ x14 : ι → ι → ι . λ x15 x16 . x16) (setsum 0 0))) (Inj0 0) (λ x13 : ι → ι . λ x14 . x1 (λ x15 x16 . λ x17 : ι → ι → ι . Inj1 (x3 (λ x18 x19 x20 . 0) (λ x18 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x19 : ι → ι → ι . 0))) (setsum 0 (x2 (λ x15 . λ x16 : ι → (ι → ι) → ι → ι . λ x17 x18 . 0) (λ x15 . λ x16 : ι → ι → ι . λ x17 x18 . 0) 0)))) (Inj1 (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . x9) (setsum (Inj0 0) (x5 0 0)) (Inj1 (x1 (λ x9 x10 . λ x11 : ι → ι → ι . 0) 0)) (λ x9 : ι → ι . λ x10 . setsum (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x11 : ι → ι . λ x12 . 0)) (x6 (λ x11 . 0)))))) ⟶ (∀ x4 : (ι → ι → ι) → ι → ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x7 : ((ι → ι → ι) → (ι → ι) → ι → ι) → ι → (ι → ι) → ι → ι . x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . Inj1 (x2 (λ x11 . λ x12 : ι → (ι → ι) → ι → ι . λ x13 x14 . x2 (λ x15 . λ x16 : ι → (ι → ι) → ι → ι . λ x17 x18 . setsum 0 0) (λ x15 . λ x16 : ι → ι → ι . λ x17 x18 . setsum 0 0) 0) (λ x11 . λ x12 : ι → ι → ι . λ x13 x14 . x13) (x1 (λ x11 x12 . λ x13 : ι → ι → ι . setsum 0 0) (x2 (λ x11 . λ x12 : ι → (ι → ι) → ι → ι . λ x13 x14 . 0) (λ x11 . λ x12 : ι → ι → ι . λ x13 x14 . 0) 0)))) 0 (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . x6 (λ x11 : (ι → ι) → ι → ι . 0) (x6 (λ x11 : (ι → ι) → ι → ι . x11 (λ x12 . 0) 0) (Inj1 0) (λ x11 . x7 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . 0) 0 (λ x12 . 0) 0)) (λ x11 . Inj1 (x2 (λ x12 . λ x13 : ι → (ι → ι) → ι → ι . λ x14 x15 . 0) (λ x12 . λ x13 : ι → ι → ι . λ x14 x15 . 0) 0))) (x1 (λ x9 x10 . λ x11 : ι → ι → ι . x7 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . Inj1 0) 0 (λ x12 . x9) (x7 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . 0) 0 (λ x12 . 0) 0)) 0) (x1 (λ x9 x10 . λ x11 : ι → ι → ι . x0 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . 0) (x11 0 0) (Inj0 0) (λ x12 : ι → ι . λ x13 . 0)) (setsum (x6 (λ x9 : (ι → ι) → ι → ι . 0) 0 (λ x9 . 0)) 0)) (λ x9 : ι → ι . λ x10 . x10)) (λ x9 : ι → ι . λ x10 . 0) = x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . x3 (λ x11 x12 x13 . Inj1 (setsum (Inj0 0) 0)) (λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x12 : ι → ι → ι . Inj1 (x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . x3 (λ x15 x16 x17 . 0) (λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x16 : ι → ι → ι . 0)) (x2 (λ x13 . λ x14 : ι → (ι → ι) → ι → ι . λ x15 x16 . 0) (λ x13 . λ x14 : ι → ι → ι . λ x15 x16 . 0) 0) x9 (λ x13 : ι → ι . λ x14 . Inj1 0)))) (setsum 0 (x6 (λ x9 : (ι → ι) → ι → ι . x2 (λ x10 . λ x11 : ι → (ι → ι) → ι → ι . λ x12 x13 . 0) (λ x10 . λ x11 : ι → ι → ι . λ x12 x13 . x2 (λ x14 . λ x15 : ι → (ι → ι) → ι → ι . λ x16 x17 . 0) (λ x14 . λ x15 : ι → ι → ι . λ x16 x17 . 0) 0) (x2 (λ x10 . λ x11 : ι → (ι → ι) → ι → ι . λ x12 x13 . 0) (λ x10 . λ x11 : ι → ι → ι . λ x12 x13 . 0) 0)) (x3 (λ x9 x10 x11 . x0 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x12 : ι → ι . λ x13 . 0)) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 : ι → ι → ι . setsum 0 0)) (λ x9 . 0))) (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . 0) (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . 0) x5 (setsum x5 (x7 (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . 0) 0 (λ x9 . 0) 0)) (λ x9 : ι → ι . λ x10 . Inj0 (setsum 0 0))) (x2 (λ x9 . λ x10 : ι → (ι → ι) → ι → ι . λ x11 x12 . x10 (x3 (λ x13 x14 x15 . 0) (λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x14 : ι → ι → ι . 0)) (λ x13 . 0) (x2 (λ x13 . λ x14 : ι → (ι → ι) → ι → ι . λ x15 x16 . 0) (λ x13 . λ x14 : ι → ι → ι . λ x15 x16 . 0) 0)) (λ x9 . λ x10 : ι → ι → ι . λ x11 x12 . setsum 0 0) 0) (λ x9 : ι → ι . λ x10 . x6 (λ x11 : (ι → ι) → ι → ι . x11 (λ x12 . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x13 : ι → ι . λ x14 . 0)) 0) (x1 (λ x11 x12 . λ x13 : ι → ι → ι . 0) 0) (λ x11 . 0))) (λ x9 : ι → ι . λ x10 . x6 (λ x11 : (ι → ι) → ι → ι . setsum (x1 (λ x12 x13 . λ x14 : ι → ι → ι . x13) (x7 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . 0) 0 (λ x12 . 0) 0)) 0) (x7 (λ x11 : ι → ι → ι . λ x12 : ι → ι . λ x13 . setsum 0 (x1 (λ x14 x15 . λ x16 : ι → ι → ι . 0) 0)) 0 (λ x11 . x3 (λ x12 x13 x14 . 0) (λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x13 : ι → ι → ι . setsum 0 0)) 0) (λ x11 . x7 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . x1 (λ x15 x16 . λ x17 : ι → ι → ι . setsum 0 0) 0) (x7 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . x3 (λ x15 x16 x17 . 0) (λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x16 : ι → ι → ι . 0)) x10 (λ x12 . Inj0 0) (x3 (λ x12 x13 x14 . 0) (λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x13 : ι → ι → ι . 0))) (λ x12 . x12) 0))) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → (ι → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι . ∀ x6 : (ι → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x7 . x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . 0) (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . Inj1 0) (x5 (λ x9 : ι → ι → ι . λ x10 : ι → ι . setsum (x3 (λ x11 x12 x13 . 0) (λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x12 : ι → ι → ι . 0)) 0) (λ x9 : ι → ι . x3 (λ x10 x11 x12 . x11) (λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x11 : ι → ι → ι . 0)) (λ x9 . x6 (λ x10 . x9) (λ x10 x11 . 0) (λ x10 . x7))) (x3 (λ x9 x10 x11 . Inj1 x10) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 : ι → ι → ι . x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . 0) (Inj1 0) 0 (λ x11 : ι → ι . λ x12 . Inj1 0))) (λ x9 : ι → ι . λ x10 . x9 0)) (setsum (Inj1 (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . x1 (λ x11 x12 . λ x13 : ι → ι → ι . 0) 0) x4 (x5 (λ x9 : ι → ι → ι . λ x10 : ι → ι . 0) (λ x9 : ι → ι . 0) (λ x9 . 0)) (λ x9 : ι → ι . λ x10 . Inj0 0))) 0) (λ x9 : ι → ι . λ x10 . x10) = x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . Inj1 (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . x1 (λ x15 x16 . λ x17 : ι → ι → ι . 0) 0) (x10 (λ x13 : ι → ι . λ x14 . 0)) (Inj1 0) (λ x13 : ι → ι . λ x14 . Inj1 0)) (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . x10 (λ x13 : ι → ι . λ x14 . 0)) x7 (x1 (λ x11 x12 . λ x13 : ι → ι → ι . 0) 0) (λ x11 : ι → ι . λ x12 . 0)) (Inj1 (x1 (λ x11 x12 . λ x13 : ι → ι → ι . 0) 0)) (λ x11 : ι → ι . λ x12 . 0))) (x2 (λ x9 . λ x10 : ι → (ι → ι) → ι → ι . λ x11 x12 . setsum x12 (Inj0 x12)) (λ x9 . λ x10 : ι → ι → ι . λ x11 x12 . 0) x4) (Inj1 (x5 (λ x9 : ι → ι → ι . λ x10 : ι → ι . setsum (setsum 0 0) (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . 0) 0 0 (λ x11 : ι → ι . λ x12 . 0))) (λ x9 : ι → ι . x9 0) (λ x9 . x1 (λ x10 x11 . λ x12 : ι → ι → ι . x9) (setsum 0 0)))) (λ x9 : ι → ι . λ x10 . x10)) ⟶ False (proof)Theorem d62b4.. : ∀ x0 : ((ι → ι → ι → ι → ι) → ι) → (ι → ι) → ι . ∀ x1 : (((ι → ι) → ι) → ι) → ι → ((ι → ι → ι) → ι → ι → ι) → ι → (ι → ι) → ι . ∀ x2 : (ι → (ι → ι → ι → ι) → ((ι → ι) → ι) → ι) → (ι → ι) → (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι . ∀ x3 : (((((ι → ι) → ι → ι) → ι) → ι → ι) → ι) → ι → ((ι → ι → ι) → ι → ι) → (ι → ι) → ι . (∀ x4 . ∀ x5 : (ι → ι → ι) → (ι → ι) → (ι → ι) → ι . ∀ x6 x7 . x3 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι . x1 (λ x10 : (ι → ι) → ι . x2 (λ x11 . λ x12 : ι → ι → ι → ι . λ x13 : (ι → ι) → ι . 0) (λ x11 . x10 (λ x12 . x2 (λ x13 . λ x14 : ι → ι → ι → ι . λ x15 : (ι → ι) → ι . 0) (λ x13 . 0) (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . λ x15 . 0))) (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . λ x13 . setsum (x0 (λ x14 : ι → ι → ι → ι → ι . 0) (λ x14 . 0)) 0)) (setsum (x0 (λ x10 : ι → ι → ι → ι → ι . x6) (λ x10 . x9 (λ x11 : (ι → ι) → ι → ι . 0) 0)) (x1 (λ x10 : (ι → ι) → ι . Inj0 0) (setsum 0 0) (λ x10 : ι → ι → ι . λ x11 x12 . 0) (x2 (λ x10 . λ x11 : ι → ι → ι → ι . λ x12 : (ι → ι) → ι . 0) (λ x10 . 0) (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0)) (λ x10 . setsum 0 0))) (λ x10 : ι → ι → ι . λ x11 x12 . x12) (x0 (λ x10 : ι → ι → ι → ι → ι . x6) (λ x10 . x6)) (λ x10 . x1 (λ x11 : (ι → ι) → ι . x10) (setsum (x9 (λ x11 : (ι → ι) → ι → ι . 0) 0) (x3 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x11 : ι → ι → ι . λ x12 . 0) (λ x11 . 0))) (λ x11 : ι → ι → ι . λ x12 x13 . setsum (setsum 0 0) (x0 (λ x14 : ι → ι → ι → ι → ι . 0) (λ x14 . 0))) (x2 (λ x11 . λ x12 : ι → ι → ι → ι . λ x13 : (ι → ι) → ι . Inj0 0) (λ x11 . x9 (λ x12 : (ι → ι) → ι → ι . 0) 0) (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . λ x13 . setsum 0 0)) (λ x11 . 0))) x6 (λ x9 : ι → ι → ι . λ x10 . x7) (λ x9 . 0) = x6) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . x3 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι . x1 (λ x10 : (ι → ι) → ι . x7 (x10 (λ x11 . Inj0 0)) (λ x11 : ι → ι . 0) (λ x11 . x9 (λ x12 : (ι → ι) → ι → ι . x11) (x10 (λ x12 . 0))) 0) 0 (λ x10 : ι → ι → ι . λ x11 x12 . 0) (x2 (λ x10 . λ x11 : ι → ι → ι → ι . λ x12 : (ι → ι) → ι . 0) (λ x10 . 0) (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . x9 (λ x13 : (ι → ι) → ι → ι . x10 (λ x14 . 0)) 0)) (λ x10 . x0 (λ x11 : ι → ι → ι → ι → ι . 0) (λ x11 . x9 (λ x12 : (ι → ι) → ι → ι . 0) (Inj1 0)))) (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 : (ι → ι) → ι . 0) (λ x9 . 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . x7 (x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 : (ι → ι) → ι . x1 (λ x15 : (ι → ι) → ι . 0) 0 (λ x15 : ι → ι → ι . λ x16 x17 . 0) 0 (λ x15 . 0)) (λ x12 . 0) (λ x12 : (ι → ι) → ι . λ x13 : ι → ι . λ x14 . setsum 0 0)) (λ x12 : ι → ι . x10 0) (λ x12 . Inj1 0) (x1 (λ x12 : (ι → ι) → ι . x0 (λ x13 : ι → ι → ι → ι → ι . 0) (λ x13 . 0)) (x9 (λ x12 . 0)) (λ x12 : ι → ι → ι . λ x13 x14 . Inj1 0) (Inj1 0) (λ x12 . x3 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x13 : ι → ι → ι . λ x14 . 0) (λ x13 . 0))))) (λ x9 : ι → ι → ι . λ x10 . x1 (λ x11 : (ι → ι) → ι . setsum 0 0) (Inj1 0) (λ x11 : ι → ι → ι . λ x12 x13 . x13) (setsum (x6 (Inj1 0)) (x1 (λ x11 : (ι → ι) → ι . x7 0 (λ x12 : ι → ι . 0) (λ x12 . 0) 0) x10 (λ x11 : ι → ι → ι . λ x12 x13 . x13) 0 (λ x11 . x10))) (λ x11 . setsum x11 x10)) (λ x9 . x1 (λ x10 : (ι → ι) → ι . x10 (λ x11 . x10 (λ x12 . setsum 0 0))) (x0 (λ x10 : ι → ι → ι → ι → ι . x0 (λ x11 : ι → ι → ι → ι → ι . 0) (λ x11 . setsum 0 0)) (λ x10 . 0)) (λ x10 : ι → ι → ι . λ x11 x12 . Inj1 0) 0 (λ x10 . 0)) = Inj1 (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 : (ι → ι) → ι . 0) (λ x9 . x6 (x3 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι → ι . setsum 0 0) x9 (λ x10 : ι → ι → ι . λ x11 . x0 (λ x12 : ι → ι → ι → ι → ι . 0) (λ x12 . 0)) (λ x10 . Inj1 0))) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . x0 (λ x12 : ι → ι → ι → ι → ι . setsum (x9 (λ x13 . 0)) (x9 (λ x13 . 0))) (λ x12 . x2 (λ x13 . λ x14 : ι → ι → ι → ι . λ x15 : (ι → ι) → ι . setsum 0 0) (λ x13 . x11) (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . λ x15 . x12))))) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → (ι → ι) → ι) → ι → ι . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 . x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 : (ι → ι) → ι . Inj1 0) (λ x9 . x6 x9 (λ x10 : ι → ι . x7)) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . Inj1 0) = x6 (x1 (λ x9 : (ι → ι) → ι . Inj0 (x5 (λ x10 : ι → ι → ι . λ x11 : ι → ι . x11 0) x7)) (Inj1 (Inj0 (x6 0 (λ x9 : ι → ι . 0)))) (λ x9 : ι → ι → ι . λ x10 x11 . 0) 0 (λ x9 . 0)) (λ x9 : ι → ι . setsum 0 (Inj1 (x0 (λ x10 : ι → ι → ι → ι → ι . Inj0 0) (λ x10 . x9 0))))) ⟶ (∀ x4 : ι → (ι → ι) → ι . ∀ x5 : ι → ι → (ι → ι) → ι → ι . ∀ x6 x7 . x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 : (ι → ι) → ι . x3 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι → ι . x12 (λ x13 : (ι → ι) → ι → ι . x3 (λ x14 : (((ι → ι) → ι → ι) → ι) → ι → ι . x11 (λ x15 . 0)) (setsum 0 0) (λ x14 : ι → ι → ι . λ x15 . x1 (λ x16 : (ι → ι) → ι . 0) 0 (λ x16 : ι → ι → ι . λ x17 x18 . 0) 0 (λ x16 . 0)) (λ x14 . setsum 0 0)) (setsum 0 (x10 0 0 0))) (Inj0 (x11 (λ x12 . x1 (λ x13 : (ι → ι) → ι . 0) 0 (λ x13 : ι → ι → ι . λ x14 x15 . 0) 0 (λ x13 . 0)))) (λ x12 : ι → ι → ι . λ x13 . x3 (λ x14 : (((ι → ι) → ι → ι) → ι) → ι → ι . Inj0 x13) 0 (λ x14 : ι → ι → ι . λ x15 . setsum (setsum 0 0) 0) (λ x14 . 0)) (λ x12 . x1 (λ x13 : (ι → ι) → ι . x1 (λ x14 : (ι → ι) → ι . 0) (x10 0 0 0) (λ x14 : ι → ι → ι . λ x15 x16 . x16) 0 (λ x14 . 0)) 0 (λ x13 : ι → ι → ι . λ x14 x15 . x12) (x1 (λ x13 : (ι → ι) → ι . x1 (λ x14 : (ι → ι) → ι . 0) 0 (λ x14 : ι → ι → ι . λ x15 x16 . 0) 0 (λ x14 . 0)) (x10 0 0 0) (λ x13 : ι → ι → ι . λ x14 x15 . 0) (x0 (λ x13 : ι → ι → ι → ι → ι . 0) (λ x13 . 0)) (λ x13 . 0)) (λ x13 . x13))) (λ x9 . x5 0 0 (λ x10 . 0) 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . x1 (λ x12 : (ι → ι) → ι . x12 (λ x13 . Inj1 0)) 0 (λ x12 : ι → ι → ι . λ x13 x14 . x3 (λ x15 : (((ι → ι) → ι → ι) → ι) → ι → ι . x15 (λ x16 : (ι → ι) → ι → ι . x3 (λ x17 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x17 : ι → ι → ι . λ x18 . 0) (λ x17 . 0)) (x15 (λ x16 : (ι → ι) → ι → ι . 0) 0)) 0 (λ x15 : ι → ι → ι . λ x16 . setsum (setsum 0 0) x13) (λ x15 . setsum (x2 (λ x16 . λ x17 : ι → ι → ι → ι . λ x18 : (ι → ι) → ι . 0) (λ x16 . 0) (λ x16 : (ι → ι) → ι . λ x17 : ι → ι . λ x18 . 0)) x14)) 0 (λ x12 . x1 (λ x13 : (ι → ι) → ι . 0) 0 (λ x13 : ι → ι → ι . λ x14 x15 . 0) (setsum (x3 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x13 : ι → ι → ι . λ x14 . 0) (λ x13 . 0)) 0) (λ x13 . x10 x11))) = setsum 0 (x0 (λ x9 : ι → ι → ι → ι → ι . x9 x7 (x0 (λ x10 : ι → ι → ι → ι → ι . x0 (λ x11 : ι → ι → ι → ι → ι . 0) (λ x11 . 0)) (λ x10 . x6)) 0 x7) (λ x9 . Inj1 (setsum (setsum 0 0) x9)))) ⟶ (∀ x4 : ι → (ι → ι) → (ι → ι) → ι . ∀ x5 : ι → ι → (ι → ι) → ι → ι . ∀ x6 . ∀ x7 : (ι → ι → ι → ι) → ι → (ι → ι) → ι → ι . x1 (λ x9 : (ι → ι) → ι . x7 (λ x10 x11 x12 . x2 (λ x13 . λ x14 : ι → ι → ι → ι . λ x15 : (ι → ι) → ι . setsum (Inj0 0) x12) (λ x13 . setsum x12 0) (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . λ x15 . x15)) 0 (λ x10 . x3 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x11 : ι → ι → ι . λ x12 . 0) (λ x11 . Inj0 (x7 (λ x12 x13 x14 . 0) 0 (λ x12 . 0) 0))) (x9 (λ x10 . x6))) 0 (λ x9 : ι → ι → ι . λ x10 x11 . x11) (x7 (λ x9 x10 x11 . 0) (x3 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x9 : ι → ι → ι . λ x10 . setsum (x9 0 0) (setsum 0 0)) (λ x9 . x7 (λ x10 x11 x12 . Inj0 0) (x1 (λ x10 : (ι → ι) → ι . 0) 0 (λ x10 : ι → ι → ι . λ x11 x12 . 0) 0 (λ x10 . 0)) (λ x10 . x7 (λ x11 x12 x13 . 0) 0 (λ x11 . 0) 0) (Inj1 0))) (λ x9 . x1 (λ x10 : (ι → ι) → ι . 0) (x7 (λ x10 x11 x12 . x2 (λ x13 . λ x14 : ι → ι → ι → ι . λ x15 : (ι → ι) → ι . 0) (λ x13 . 0) (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . λ x15 . 0)) (setsum 0 0) (λ x10 . x7 (λ x11 x12 x13 . 0) 0 (λ x11 . 0) 0) (x1 (λ x10 : (ι → ι) → ι . 0) 0 (λ x10 : ι → ι → ι . λ x11 x12 . 0) 0 (λ x10 . 0))) (λ x10 : ι → ι → ι . λ x11 x12 . setsum 0 (x10 0 0)) 0 (λ x10 . x3 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι → ι . Inj0 0) (setsum 0 0) (λ x11 : ι → ι → ι . λ x12 . setsum 0 0) (λ x11 . 0))) 0) (λ x9 . 0) = Inj0 (Inj1 (Inj1 (x7 (λ x9 x10 x11 . x10) 0 (λ x9 . setsum 0 0) (setsum 0 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x1 (λ x9 : (ι → ι) → ι . 0) 0 (λ x9 : ι → ι → ι . λ x10 x11 . x0 (λ x12 : ι → ι → ι → ι → ι . x3 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x13 : ι → ι → ι . λ x14 . setsum x11 (x3 (λ x15 : (((ι → ι) → ι → ι) → ι) → ι → ι . 0) 0 (λ x15 : ι → ι → ι . λ x16 . 0) (λ x15 . 0))) (λ x13 . x12 (x1 (λ x14 : (ι → ι) → ι . 0) 0 (λ x14 : ι → ι → ι . λ x15 x16 . 0) 0 (λ x14 . 0)) x13 0 (setsum 0 0))) (λ x12 . x2 (λ x13 . λ x14 : ι → ι → ι → ι . λ x15 : (ι → ι) → ι . x2 (λ x16 . λ x17 : ι → ι → ι → ι . λ x18 : (ι → ι) → ι . 0) (λ x16 . x0 (λ x17 : ι → ι → ι → ι → ι . 0) (λ x17 . 0)) (λ x16 : (ι → ι) → ι . λ x17 : ι → ι . λ x18 . x16 (λ x19 . 0))) (λ x13 . x10) (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . λ x15 . x15))) 0 (λ x9 . 0) = x0 (λ x9 : ι → ι → ι → ι → ι . x2 (λ x10 . λ x11 : ι → ι → ι → ι . λ x12 : (ι → ι) → ι . x2 (λ x13 . λ x14 : ι → ι → ι → ι . λ x15 : (ι → ι) → ι . 0) (λ x13 . x11 x13 0 (x11 0 0 0)) (λ x13 : (ι → ι) → ι . λ x14 : ι → ι . λ x15 . x0 (λ x16 : ι → ι → ι → ι → ι . 0) (λ x16 . x15))) (λ x10 . 0) (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0)) x7) ⟶ (∀ x4 . ∀ x5 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → ι . ∀ x6 x7 . x0 (λ x9 : ι → ι → ι → ι → ι . x7) (λ x9 . x7) = x7) ⟶ (∀ x4 : ι → ι → ι → ι . ∀ x5 : ι → ι → ι . ∀ x6 : (ι → ι) → ι . ∀ x7 . x0 (λ x9 : ι → ι → ι → ι → ι . 0) (λ x9 . 0) = x7) ⟶ False (proof)Theorem a44be.. : ∀ x0 : (ι → ι) → ι → ι . ∀ x1 : ((ι → ι) → (ι → ι) → ι) → ((((ι → ι) → ι → ι) → ι) → (ι → ι) → ι → ι) → ι . ∀ x2 : (((ι → ι) → ι) → ι → ι → ι) → (ι → ι) → ι . ∀ x3 : (ι → ((ι → ι) → ι) → ι) → (ι → ι) → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x3 (λ x9 . λ x10 : (ι → ι) → ι . x10 (λ x11 . Inj1 (x3 (λ x12 . λ x13 : (ι → ι) → ι . setsum 0 0) (λ x12 . x12)))) (λ x9 . setsum (Inj0 (setsum (x0 (λ x10 . 0) 0) (x2 (λ x10 : (ι → ι) → ι . λ x11 x12 . 0) (λ x10 . 0)))) (setsum 0 x6)) = setsum (setsum (Inj1 (setsum (setsum 0 0) (Inj0 0))) (Inj0 0)) 0) ⟶ (∀ x4 : ι → (ι → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x3 (λ x9 . λ x10 : (ι → ι) → ι . setsum (x2 (λ x11 : (ι → ι) → ι . λ x12 x13 . 0) (λ x11 . x2 (λ x12 : (ι → ι) → ι . λ x13 x14 . 0) (λ x12 . setsum 0 0))) (Inj0 0)) (λ x9 . setsum (x0 (λ x10 . 0) (x0 (λ x10 . 0) (x2 (λ x10 : (ι → ι) → ι . λ x11 x12 . 0) (λ x10 . 0)))) (x2 (λ x10 : (ι → ι) → ι . λ x11 x12 . x11) (λ x10 . x0 (λ x11 . x10) x9))) = setsum (setsum (setsum (x4 (Inj1 0) (λ x9 x10 . 0)) (x7 (Inj0 0))) (x2 (λ x9 : (ι → ι) → ι . λ x10 x11 . Inj1 (Inj1 0)) (λ x9 . x1 (λ x10 x11 : ι → ι . Inj0 0) (λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . x11 0)))) 0) ⟶ (∀ x4 : ι → ι → ι → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι) → ι → ι → ι . ∀ x7 : ι → (ι → ι → ι) → (ι → ι) → ι . x2 (λ x9 : (ι → ι) → ι . λ x10 x11 . setsum 0 0) (λ x9 . 0) = x4 0 (x7 (Inj1 (x4 (x7 0 (λ x9 x10 . 0) (λ x9 . 0)) (x7 0 (λ x9 x10 . 0) (λ x9 . 0)) (Inj1 0))) (λ x9 x10 . 0) (λ x9 . x5)) (Inj1 (x2 (λ x9 : (ι → ι) → ι . λ x10 x11 . 0) (λ x9 . x2 (λ x10 : (ι → ι) → ι . λ x11 x12 . x9) (λ x10 . setsum 0 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x2 (λ x9 : (ι → ι) → ι . λ x10 x11 . setsum (x3 (λ x12 . λ x13 : (ι → ι) → ι . x12) (λ x12 . setsum (Inj0 0) (x3 (λ x13 . λ x14 : (ι → ι) → ι . 0) (λ x13 . 0)))) (Inj1 (Inj0 (Inj0 0)))) (λ x9 . setsum (Inj1 (x2 (λ x10 : (ι → ι) → ι . λ x11 x12 . x1 (λ x13 x14 : ι → ι . 0) (λ x13 : ((ι → ι) → ι → ι) → ι . λ x14 : ι → ι . λ x15 . 0)) (λ x10 . x10))) (setsum (x0 (λ x10 . x2 (λ x11 : (ι → ι) → ι . λ x12 x13 . 0) (λ x11 . 0)) (x1 (λ x10 x11 : ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0))) (setsum 0 (setsum 0 0)))) = x7) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 x10 : ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . setsum (x2 (λ x12 : (ι → ι) → ι . λ x13 x14 . 0) (λ x12 . 0)) (setsum 0 (x2 (λ x12 : (ι → ι) → ι . λ x13 x14 . 0) (λ x12 . x2 (λ x13 : (ι → ι) → ι . λ x14 x15 . 0) (λ x13 . 0))))) = x5) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x1 (λ x9 x10 : ι → ι . x9 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . 0) = x7) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x0 (λ x9 . 0) (setsum (x3 (λ x9 . λ x10 : (ι → ι) → ι . x0 (λ x11 . setsum 0 0) (x10 (λ x11 . 0))) (λ x9 . Inj1 0)) x4) = setsum x4 (Inj1 x4)) ⟶ (∀ x4 : ((ι → ι → ι) → ι) → ι . ∀ x5 x6 . ∀ x7 : (ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x0 (λ x9 . x1 (λ x10 x11 : ι → ι . Inj0 (Inj1 (x7 (λ x12 . 0) (λ x12 : ι → ι . λ x13 . 0) (λ x12 . 0) 0))) (λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . x9)) (x1 (λ x9 x10 : ι → ι . x7 (λ x11 . x10 (Inj1 0)) (λ x11 : ι → ι . λ x12 . x2 (λ x13 : (ι → ι) → ι . λ x14 x15 . setsum 0 0) (λ x13 . x11 0)) (λ x11 . 0) (x0 (λ x11 . x2 (λ x12 : (ι → ι) → ι . λ x13 x14 . 0) (λ x12 . 0)) (Inj0 0))) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . x2 (λ x12 : (ι → ι) → ι . λ x13 x14 . setsum (Inj1 0) (x3 (λ x15 . λ x16 : (ι → ι) → ι . 0) (λ x15 . 0))) (λ x12 . 0))) = x1 (λ x9 x10 : ι → ι . x7 (λ x11 . setsum (x0 (λ x12 . 0) x11) x11) (λ x11 : ι → ι . λ x12 . x12) (λ x11 . x9 (setsum (x2 (λ x12 : (ι → ι) → ι . λ x13 x14 . 0) (λ x12 . 0)) 0)) (x9 (setsum (Inj0 0) (x10 0)))) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . x0 (λ x12 . x1 (λ x13 x14 : ι → ι . x3 (λ x15 . λ x16 : (ι → ι) → ι . setsum 0 0) (λ x15 . Inj1 0)) (λ x13 : ((ι → ι) → ι → ι) → ι . λ x14 : ι → ι . λ x15 . 0)) (x7 (λ x12 . x0 (λ x13 . x10 0) (Inj0 0)) (λ x12 : ι → ι . λ x13 . x0 (λ x14 . Inj0 0) (x2 (λ x14 : (ι → ι) → ι . λ x15 x16 . 0) (λ x14 . 0))) (λ x12 . x11) (Inj0 (x7 (λ x12 . 0) (λ x12 : ι → ι . λ x13 . 0) (λ x12 . 0) 0))))) ⟶ False (proof)Theorem 9718f.. : ∀ x0 : (ι → (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → ι) → (ι → ι → ι) → ι . ∀ x1 : (ι → ι) → ι → (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . ∀ x2 : (ι → ι → ι) → ((ι → (ι → ι) → ι) → ι) → ι → ι . ∀ x3 : ((((ι → ι) → (ι → ι) → ι → ι) → ι → ι) → (ι → (ι → ι) → ι → ι) → ι → ι) → ((ι → ι → ι → ι) → ι) → ι → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → (ι → ι → ι) → ι . ∀ x7 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . x2 (λ x12 x13 . 0) (λ x12 : ι → (ι → ι) → ι . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 . x15) (λ x13 . x2 (λ x14 x15 . x13) (λ x14 : ι → (ι → ι) → ι . x13))) (Inj1 (Inj0 0))) (λ x9 : ι → ι → ι → ι . x0 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 . x2 (λ x16 x17 . 0) (λ x16 : ι → (ι → ι) → ι . x3 (λ x17 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x18 : ι → (ι → ι) → ι → ι . λ x19 . 0) (λ x17 : ι → ι → ι → ι . 0) 0) 0) (λ x13 x14 . setsum (Inj0 0) (setsum 0 0))) (λ x10 x11 . x2 (λ x12 x13 . 0) (λ x12 : ι → (ι → ι) → ι . x12 (setsum 0 0) (λ x13 . x1 (λ x14 . 0) 0 (λ x14 : (ι → ι) → ι → ι . 0) (λ x14 : ι → ι . λ x15 . 0))) 0)) 0 = x2 (λ x9 x10 . x1 (λ x11 . Inj0 0) (x1 (λ x11 . Inj1 0) (Inj1 (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x12 : ι → (ι → ι) → ι → ι . λ x13 . 0) (λ x11 : ι → ι → ι → ι . 0) 0)) (λ x11 : (ι → ι) → ι → ι . x11 (λ x12 . x1 (λ x13 . 0) 0 (λ x13 : (ι → ι) → ι → ι . 0) (λ x13 : ι → ι . λ x14 . 0)) (x11 (λ x12 . 0) 0)) (λ x11 : ι → ι . λ x12 . x12)) (λ x11 : (ι → ι) → ι → ι . x9) (λ x11 : ι → ι . λ x12 . x9)) (λ x9 : ι → (ι → ι) → ι . setsum (Inj0 (x3 (λ x10 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x11 : ι → (ι → ι) → ι → ι . λ x12 . x12) (λ x10 : ι → ι → ι → ι . x10 0 0 0) (Inj1 0))) (x2 (λ x10 x11 . 0) (λ x10 : ι → (ι → ι) → ι . setsum (x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 . 0) (λ x11 x12 . 0)) (Inj0 0)) 0)) (Inj1 (Inj1 (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 . x9) (λ x9 x10 . Inj1 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι . x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 . x3 (λ x12 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 . x2 (λ x15 x16 . 0) (λ x15 : ι → (ι → ι) → ι . x12 (λ x16 x17 : ι → ι . λ x18 . x16 0) (x3 (λ x16 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x17 : ι → (ι → ι) → ι → ι . λ x18 . 0) (λ x16 : ι → ι → ι → ι . 0) 0)) 0) (λ x12 : ι → ι → ι → ι . x1 (λ x13 . x2 (λ x14 x15 . 0) (λ x14 : ι → (ι → ι) → ι . 0) (x3 (λ x14 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x15 : ι → (ι → ι) → ι → ι . λ x16 . 0) (λ x14 : ι → ι → ι → ι . 0) 0)) (Inj1 (x2 (λ x13 x14 . 0) (λ x13 : ι → (ι → ι) → ι . 0) 0)) (λ x13 : (ι → ι) → ι → ι . x0 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x16 . Inj0 0) (λ x14 x15 . setsum 0 0)) (λ x13 : ι → ι . λ x14 . x2 (λ x15 x16 . x16) (λ x15 : ι → (ι → ι) → ι . x15 0 (λ x16 . 0)) (Inj1 0))) (setsum (x1 (λ x12 . 0) (x9 (λ x12 x13 : ι → ι . λ x14 . 0) 0) (λ x12 : (ι → ι) → ι → ι . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 . 0) (λ x13 x14 . 0)) (λ x12 : ι → ι . λ x13 . 0)) (Inj1 0))) (λ x9 : ι → ι → ι → ι . x9 (x5 (x0 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 . setsum 0 0) (λ x10 x11 . 0))) (x5 x6) (x5 (Inj0 (x0 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 . 0) (λ x10 x11 . 0))))) (x7 (setsum x6 (Inj0 (x7 0)))) = setsum (Inj1 0) 0) ⟶ (∀ x4 : ι → ι → (ι → ι) → ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι) → ι) → ι → ι → ι → ι . x2 (λ x9 x10 . setsum x9 0) (λ x9 : ι → (ι → ι) → ι . 0) (Inj0 0) = x6 x5) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 x7 . x2 (λ x9 x10 . Inj0 (Inj0 (x1 (λ x11 . setsum 0 0) 0 (λ x11 : (ι → ι) → ι → ι . x11 (λ x12 . 0) 0) (λ x11 : ι → ι . λ x12 . x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 . 0) (λ x13 x14 . 0))))) (λ x9 : ι → (ι → ι) → ι . setsum x5 0) x7 = setsum (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 . 0) (λ x9 x10 . 0)) 0) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → ι → ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι . x1 (λ x9 . x0 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x12 . setsum 0 (x2 (λ x13 x14 . x2 (λ x15 x16 . 0) (λ x15 : ι → (ι → ι) → ι . 0) 0) (λ x13 : ι → (ι → ι) → ι . x2 (λ x14 x15 . 0) (λ x14 : ι → (ι → ι) → ι . 0) 0) (x0 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x15 . 0) (λ x13 x14 . 0)))) (λ x10 x11 . setsum (setsum (x7 (λ x12 . 0)) (Inj1 0)) 0)) 0 (λ x9 : (ι → ι) → ι → ι . Inj0 (x2 (λ x10 x11 . setsum x10 (x2 (λ x12 x13 . 0) (λ x12 : ι → (ι → ι) → ι . 0) 0)) (λ x10 : ι → (ι → ι) → ι . 0) x6)) (λ x9 : ι → ι . λ x10 . x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 . x0 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x16 . setsum 0 (x0 (λ x17 . λ x18 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x19 . 0) (λ x17 x18 . 0))) (λ x14 x15 . 0)) (λ x11 x12 . x12)) = Inj1 (Inj1 (Inj1 (setsum (setsum 0 0) (x4 0))))) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι) → ι → ι) → ι . ∀ x7 . x1 (λ x9 . x2 (λ x10 x11 . x10) (λ x10 : ι → (ι → ι) → ι . x7) (setsum (Inj1 (x6 (λ x10 : (ι → ι) → ι . λ x11 . 0))) (Inj0 0))) (setsum (setsum 0 (x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 . Inj1 0) (λ x9 x10 . setsum 0 0))) 0) (λ x9 : (ι → ι) → ι → ι . x5) (λ x9 : ι → ι . λ x10 . x0 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x13 . Inj1 0) (λ x11 x12 . x3 (λ x13 : ((ι → ι) → (ι → ι) → ι → ι) → ι → ι . λ x14 : ι → (ι → ι) → ι → ι . λ x15 . x13 (λ x16 x17 : ι → ι . λ x18 . x16 0) x12) (λ x13 : ι → ι → ι → ι . x2 (λ x14 x15 . x2 (λ x16 x17 . 0) (λ x16 : ι → (ι → ι) → ι . 0) 0) (λ x14 : ι → (ι → ι) → ι . x2 (λ x15 x16 . 0) (λ x15 : ι → (ι → ι) → ι . 0) 0) x10) (x1 (λ x13 . x2 (λ x14 x15 . 0) (λ x14 : ι → (ι → ι) → ι . 0) 0) (setsum 0 0) (λ x13 : (ι → ι) → ι → ι . x13 (λ x14 . 0) 0) (λ x13 : ι → ι . λ x14 . x14)))) = x5) ⟶ (∀ x4 x5 . ∀ x6 : (ι → (ι → ι) → ι) → ι . ∀ x7 . x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 . x7) (λ x9 x10 . x10) = x7) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι . x0 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . λ x11 . 0) (λ x9 x10 . x7 0) = setsum x4 0) ⟶ False (proof)Theorem 0a3a0.. : ∀ x0 : (ι → ι) → (ι → (ι → ι) → ι → ι) → ι → ι → ι → ι → ι . ∀ x1 : ((ι → ι) → (ι → (ι → ι) → ι → ι) → (ι → ι) → ι) → ι → ι . ∀ x2 : (ι → (ι → ι → ι → ι) → ι → ι) → ι → ι . ∀ x3 : ((ι → ι) → ι) → (ι → ι) → ι . (∀ x4 : ι → ι . ∀ x5 x6 x7 . x3 (λ x9 : ι → ι . x5) (λ x9 . Inj1 (setsum 0 (Inj1 (x2 (λ x10 . λ x11 : ι → ι → ι → ι . λ x12 . 0) 0)))) = x5) ⟶ (∀ x4 : ι → (ι → ι) → ι . ∀ x5 : ι → (ι → ι) → (ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 : ι → ι . x9 (x2 (λ x10 . λ x11 : ι → ι → ι → ι . λ x12 . x0 (λ x13 . Inj0 0) (λ x13 . λ x14 : ι → ι . λ x15 . setsum 0 0) (x3 (λ x13 : ι → ι . 0) (λ x13 . 0)) (x9 0) 0 (x0 (λ x13 . 0) (λ x13 . λ x14 : ι → ι . λ x15 . 0) 0 0 0 0)) x7)) (λ x9 . x5 0 (λ x10 . setsum (Inj1 (x0 (λ x11 . 0) (λ x11 . λ x12 : ι → ι . λ x13 . 0) 0 0 0 0)) (Inj0 0)) (λ x10 . 0)) = x5 (x6 (x6 (x5 0 (λ x9 . x9) (λ x9 . x1 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι → ι . λ x12 : ι → ι . 0) 0)))) (λ x9 . x3 (λ x10 : ι → ι . x6 (Inj1 (setsum 0 0))) (λ x10 . 0)) (λ x9 . setsum x9 0)) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι → ι . ∀ x7 : ι → ι . x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 . 0) (x0 (λ x12 . 0) (λ x12 . λ x13 : ι → ι . λ x14 . x14) (x7 (x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 . 0) 0)) x9 x9 x11)) (setsum (x0 (λ x9 . x5) (λ x9 . λ x10 : ι → ι . λ x11 . x11) 0 (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 . 0) 0) (setsum 0 0)) (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 : ι → ι . setsum 0 0) x5) 0) (x7 (x6 (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . 0) 0) (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 : ι → ι . 0) 0)))) = x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . setsum (Inj1 0) 0) (Inj1 (x7 0))) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 x7 . x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . 0) x5 = setsum (Inj0 (x4 (setsum 0 (setsum 0 0)))) (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 : ι → ι . x1 (λ x15 : ι → ι . λ x16 : ι → (ι → ι) → ι → ι . λ x17 : ι → ι . Inj1 0) (Inj1 0)) (x3 (λ x12 : ι → ι . setsum 0 0) (λ x12 . Inj0 0))) (x0 (λ x9 . x5) (λ x9 . λ x10 : ι → ι . λ x11 . x9) x6 (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . Inj0 0) 0) 0 (setsum 0 (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . 0) 0))))) ⟶ (∀ x4 x5 x6 . ∀ x7 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 : ι → ι . Inj1 0) x4 = Inj0 (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 : ι → ι . x3 (λ x12 : ι → ι . 0) (λ x12 . 0)) 0)) ⟶ (∀ x4 : ι → ι → ι → ι . ∀ x5 x6 . ∀ x7 : (ι → ι) → ι . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι → ι . λ x11 : ι → ι . setsum (x0 (λ x12 . setsum (x0 (λ x13 . 0) (λ x13 . λ x14 : ι → ι . λ x15 . 0) 0 0 0 0) 0) (λ x12 . λ x13 : ι → ι . λ x14 . setsum (x1 (λ x15 : ι → ι . λ x16 : ι → (ι → ι) → ι → ι . λ x17 : ι → ι . 0) 0) 0) (x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 . x11 0) (x9 0)) (x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 : ι → ι . x3 (λ x15 : ι → ι . 0) (λ x15 . 0)) (x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι → ι . λ x14 : ι → ι . 0) 0)) (x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 . 0) (x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 . 0) 0)) (x3 (λ x12 : ι → ι . x0 (λ x13 . 0) (λ x13 . λ x14 : ι → ι . λ x15 . 0) 0 0 0 0) (λ x12 . x10 0 (λ x13 . 0) 0))) (x11 (Inj0 (Inj0 0)))) 0 = x6) ⟶ (∀ x4 : ((ι → ι) → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι . x0 (λ x9 . x5) (λ x9 . λ x10 : ι → ι . λ x11 . x10 0) (x4 (λ x9 : ι → ι . λ x10 . 0)) (x3 (λ x9 : ι → ι . x7 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0)) (λ x9 . Inj1 (setsum (setsum 0 0) (x2 (λ x10 . λ x11 : ι → ι → ι → ι . λ x12 . 0) 0)))) (x2 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 . 0) (x4 (λ x9 : ι → ι . λ x10 . x9 (x9 0)))) x6 = setsum x6 0) ⟶ (∀ x4 x5 x6 . ∀ x7 : (ι → ι → ι → ι) → ι . x0 (λ x9 . x5) (λ x9 . λ x10 : ι → ι . λ x11 . x9) x5 0 0 (x0 (λ x9 . x3 (λ x10 : ι → ι . 0) (λ x10 . x3 (λ x11 : ι → ι . x7 (λ x12 x13 x14 . 0)) (λ x11 . x9))) (λ x9 . λ x10 : ι → ι . λ x11 . Inj1 (x7 (λ x12 x13 x14 . x1 (λ x15 : ι → ι . λ x16 : ι → (ι → ι) → ι → ι . λ x17 : ι → ι . 0) 0))) (Inj1 0) (setsum x4 (Inj0 (x0 (λ x9 . 0) (λ x9 . λ x10 : ι → ι . λ x11 . 0) 0 0 0 0))) (x7 (λ x9 x10 x11 . 0)) (x7 (λ x9 x10 x11 . setsum 0 (x2 (λ x12 . λ x13 : ι → ι → ι → ι . λ x14 . 0) 0)))) = x0 (λ x9 . setsum 0 (x7 (λ x10 x11 x12 . 0))) (λ x9 . λ x10 : ι → ι . λ x11 . setsum x11 0) (setsum 0 0) x6 (setsum x4 0) x6) ⟶ False (proof)Theorem 8485f.. : ∀ x0 : (ι → ι) → (ι → ι) → (ι → ι → ι → ι) → ((ι → ι) → ι → ι) → ι . ∀ x1 : (((((ι → ι) → ι) → ι → ι → ι) → ι) → ι) → ((ι → ι → ι → ι) → ι) → ι . ∀ x2 : (((ι → ι → ι) → ι) → ι) → ((ι → (ι → ι) → ι → ι) → (ι → ι) → (ι → ι) → ι) → ι → ι . ∀ x3 : (ι → ι) → ι → ι . (∀ x4 : ι → ι . ∀ x5 : (((ι → ι) → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x6 x7 . x3 (λ x9 . x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . x10 (λ x11 : (ι → ι) → ι . λ x12 x13 . 0)) (λ x10 : ι → ι → ι → ι . 0)) (x5 (λ x9 : (ι → ι) → ι . x7) (λ x9 : ι → ι . x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . x9 (Inj0 0)) (λ x10 : ι → ι → ι → ι . x7))) = x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . setsum (setsum (x3 (λ x10 . x7) 0) x7) (x9 (λ x10 : (ι → ι) → ι . λ x11 x12 . x1 (λ x13 : (((ι → ι) → ι) → ι → ι → ι) → ι . x3 (λ x14 . 0) 0) (λ x13 : ι → ι → ι → ι . x13 0 0 0)))) (λ x9 : ι → ι → ι → ι . Inj0 x6)) ⟶ (∀ x4 x5 x6 x7 . x3 (λ x9 . x9) (setsum (x2 (λ x9 : (ι → ι → ι) → ι . x5) (λ x9 : ι → (ι → ι) → ι → ι . λ x10 x11 : ι → ι . x7) 0) (Inj1 x5)) = x4) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ((ι → ι) → ι) → ι . ∀ x7 : ((ι → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι . x2 (λ x9 : (ι → ι → ι) → ι . x7 (λ x10 : ι → ι . x10 (x9 (λ x11 x12 . x10 0))) (λ x10 : ι → ι . x0 (λ x11 . setsum 0 (x1 (λ x12 : (((ι → ι) → ι) → ι → ι → ι) → ι . 0) (λ x12 : ι → ι → ι → ι . 0))) (λ x11 . x1 (λ x12 : (((ι → ι) → ι) → ι → ι → ι) → ι . Inj1 0) (λ x12 : ι → ι → ι → ι . 0)) (λ x11 x12 x13 . 0) (λ x11 : ι → ι . λ x12 . 0)) (λ x10 . x10)) (λ x9 : ι → (ι → ι) → ι → ι . λ x10 x11 : ι → ι . Inj0 (Inj1 (x3 (λ x12 . x12) 0))) 0 = setsum 0 (setsum (x7 (λ x9 : ι → ι . x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . x10 (λ x11 : (ι → ι) → ι . λ x12 x13 . 0)) (λ x10 : ι → ι → ι → ι . x2 (λ x11 : (ι → ι → ι) → ι . 0) (λ x11 : ι → (ι → ι) → ι → ι . λ x12 x13 : ι → ι . 0) 0)) (λ x9 : ι → ι . setsum 0 (x6 (λ x10 : ι → ι . 0))) (λ x9 . Inj0 0)) 0)) ⟶ (∀ x4 : ι → ι → (ι → ι) → ι → ι . ∀ x5 : (ι → ι → ι → ι) → (ι → ι) → ι . ∀ x6 x7 . x2 (λ x9 : (ι → ι → ι) → ι . x3 (λ x10 . setsum (x3 (λ x11 . setsum 0 0) (x3 (λ x11 . 0) 0)) x7) 0) (λ x9 : ι → (ι → ι) → ι → ι . λ x10 x11 : ι → ι . x0 (λ x12 . setsum (x9 (setsum 0 0) (λ x13 . Inj0 0) (x0 (λ x13 . 0) (λ x13 . 0) (λ x13 x14 x15 . 0) (λ x13 : ι → ι . λ x14 . 0))) 0) (λ x12 . 0) (λ x12 x13 x14 . 0) (λ x12 : ι → ι . λ x13 . setsum (x10 (x10 0)) (x0 (λ x14 . 0) (λ x14 . x2 (λ x15 : (ι → ι → ι) → ι . 0) (λ x15 : ι → (ι → ι) → ι → ι . λ x16 x17 : ι → ι . 0) 0) (λ x14 x15 x16 . x1 (λ x17 : (((ι → ι) → ι) → ι → ι → ι) → ι . 0) (λ x17 : ι → ι → ι → ι . 0)) (λ x14 : ι → ι . λ x15 . Inj0 0)))) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . x5 (λ x10 x11 x12 . 0) (λ x10 . setsum (Inj1 0) (Inj0 0))) (λ x9 : ι → ι → ι → ι . x3 (λ x10 . 0) (x9 (x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . 0) (λ x10 : ι → ι → ι → ι . 0)) x6 0))) = Inj1 (x3 (λ x9 . Inj1 x7) (Inj1 (x3 (λ x9 . x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . 0) (λ x10 : ι → ι → ι → ι . 0)) (x5 (λ x9 x10 x11 . 0) (λ x9 . 0)))))) ⟶ (∀ x4 x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 . x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . Inj0 x5) (λ x9 : ι → ι → ι → ι . x5) = x5) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . x6) (λ x9 : ι → ι → ι → ι . 0) = setsum x4 (x3 (λ x9 . x7) 0)) ⟶ (∀ x4 x5 . ∀ x6 : (ι → ι → ι) → ι . ∀ x7 : ι → ι . x0 (setsum 0) (λ x9 . x6 (λ x10 x11 . x7 (x0 (λ x12 . x2 (λ x13 : (ι → ι → ι) → ι . 0) (λ x13 : ι → (ι → ι) → ι → ι . λ x14 x15 : ι → ι . 0) 0) (λ x12 . x0 (λ x13 . 0) (λ x13 . 0) (λ x13 x14 x15 . 0) (λ x13 : ι → ι . λ x14 . 0)) (λ x12 x13 x14 . Inj1 0) (λ x12 : ι → ι . λ x13 . Inj1 0)))) (λ x9 x10 x11 . 0) (λ x9 : ι → ι . λ x10 . x10) = Inj0 (x3 (λ x9 . 0) (Inj1 (x6 (λ x9 x10 . x1 (λ x11 : (((ι → ι) → ι) → ι → ι → ι) → ι . 0) (λ x11 : ι → ι → ι → ι . 0)))))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → ι → ι) → ι → ι . ∀ x7 . x0 (λ x9 . x9) (λ x9 . x6 (λ x10 : (ι → ι) → ι → ι . λ x11 . x0 (λ x12 . setsum 0 x9) (x10 (λ x12 . x10 (λ x13 . 0) 0)) (λ x12 x13 x14 . 0) (λ x12 : ι → ι . λ x13 . x0 (λ x14 . x13) (λ x14 . 0) (λ x14 x15 x16 . setsum 0 0) (λ x14 : ι → ι . λ x15 . x2 (λ x16 : (ι → ι → ι) → ι . 0) (λ x16 : ι → (ι → ι) → ι → ι . λ x17 x18 : ι → ι . 0) 0))) x9) (λ x9 x10 x11 . x10) (λ x9 : ι → ι . λ x10 . 0) = Inj1 (Inj1 0)) ⟶ False (proof)Theorem 0c048.. : ∀ x0 : (ι → ι) → (ι → (ι → ι → ι) → ι) → ι . ∀ x1 : (ι → ι) → ι → ι . ∀ x2 : ((ι → ι → (ι → ι) → ι) → (ι → ι → ι) → ι → (ι → ι) → ι → ι) → (ι → ι → ι) → ι → ι . ∀ x3 : (ι → ι → ι → ι) → (ι → ι) → ι . (∀ x4 : ι → ι . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι . x3 (λ x9 x10 x11 . x10) (λ x9 . x9) = x6 (x4 0)) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 x7 . x3 (λ x9 x10 x11 . x7) (λ x9 . 0) = x7) ⟶ (∀ x4 : ((ι → ι) → ι) → ι → ι . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι → ι → ι . x2 (λ x9 : ι → ι → (ι → ι) → ι . λ x10 : ι → ι → ι . λ x11 . λ x12 : ι → ι . λ x13 . Inj1 0) (λ x9 x10 . setsum (x7 (λ x11 . x11) (Inj1 (x7 (λ x11 . 0) 0 0)) x9) 0) (x3 (λ x9 x10 x11 . setsum (Inj1 x10) (x2 (λ x12 : ι → ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 . λ x15 : ι → ι . λ x16 . x1 (λ x17 . 0) 0) (λ x12 x13 . x3 (λ x14 x15 x16 . 0) (λ x14 . 0)) (x7 (λ x12 . 0) 0 0))) (λ x9 . 0)) = Inj0 0) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x6 : (ι → ι) → ι → ι → ι → ι . ∀ x7 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι → ι . x2 (λ x9 : ι → ι → (ι → ι) → ι . λ x10 : ι → ι → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0) (λ x9 x10 . setsum (setsum (Inj0 (x7 (λ x11 . λ x12 : ι → ι . 0) (λ x11 : ι → ι . λ x12 . 0) 0)) 0) (x6 (λ x11 . x9) (x3 (λ x11 x12 x13 . x12) (λ x11 . setsum 0 0)) (x6 (λ x11 . x2 (λ x12 : ι → ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 . λ x15 : ι → ι . λ x16 . 0) (λ x12 x13 . 0) 0) (setsum 0 0) (setsum 0 0) x10) 0)) (Inj0 (x2 (λ x9 : ι → ι → (ι → ι) → ι . λ x10 : ι → ι → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0) (λ x9 x10 . x9) (Inj1 (setsum 0 0)))) = setsum (Inj0 0) x4) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → ι → ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι . x1 (λ x9 . 0) (x0 (λ x9 . x7 (x7 x9 (x0 (λ x10 . 0) (λ x10 . λ x11 : ι → ι → ι . 0)) 0 0) (Inj0 (x6 0)) (x0 (λ x10 . Inj1 0) (λ x10 . λ x11 : ι → ι → ι . 0)) (setsum 0 x9)) (λ x9 . λ x10 : ι → ι → ι . x2 (λ x11 : ι → ι → (ι → ι) → ι . λ x12 : ι → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x11 x12 . x1 (λ x13 . x1 (λ x14 . 0) 0) (x0 (λ x13 . 0) (λ x13 . λ x14 : ι → ι → ι . 0))) (Inj0 (x10 0 0)))) = x0 (λ x9 . x3 (λ x10 x11 x12 . x9) (λ x10 . x0 (λ x11 . 0) (λ x11 . λ x12 : ι → ι → ι . setsum (x3 (λ x13 x14 x15 . 0) (λ x13 . 0)) x10))) (λ x9 . λ x10 : ι → ι → ι . x3 (λ x11 x12 x13 . Inj0 (x3 (λ x14 x15 x16 . x16) (λ x14 . 0))) (λ x11 . setsum (x3 (λ x12 x13 x14 . 0) (λ x12 . 0)) (Inj1 (Inj1 0))))) ⟶ (∀ x4 : ((ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → (ι → ι → ι) → ι . ∀ x7 : ι → ι → ι . x1 (λ x9 . 0) (x6 0 (λ x9 x10 . x0 (λ x11 . x2 (λ x12 : ι → ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 . λ x15 : ι → ι . λ x16 . setsum 0 0) (λ x12 x13 . x12) (setsum 0 0)) (λ x11 . λ x12 : ι → ι → ι . x3 (λ x13 x14 x15 . x13) (λ x13 . 0)))) = x6 (x3 (λ x9 x10 x11 . x7 (x7 x11 (x2 (λ x12 : ι → ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 . λ x15 : ι → ι . λ x16 . 0) (λ x12 x13 . 0) 0)) (x2 (λ x12 : ι → ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 . λ x15 : ι → ι . λ x16 . x3 (λ x17 x18 x19 . 0) (λ x17 . 0)) (λ x12 x13 . x0 (λ x14 . 0) (λ x14 . λ x15 : ι → ι → ι . 0)) (Inj0 0))) (λ x9 . x7 (setsum 0 (x7 0 0)) (x7 (x5 (λ x10 . 0)) (x3 (λ x10 x11 x12 . 0) (λ x10 . 0))))) (λ x9 x10 . setsum (x6 (x6 0 (λ x11 x12 . x11)) (λ x11 x12 . setsum 0 x9)) 0)) ⟶ (∀ x4 x5 x6 : ι → ι . ∀ x7 . x0 (λ x9 . Inj0 (x0 (λ x10 . setsum (Inj0 0) (x6 0)) (λ x10 . λ x11 : ι → ι → ι . 0))) (λ x9 . λ x10 : ι → ι → ι . 0) = Inj1 (setsum 0 (x0 (λ x9 . 0) (λ x9 . λ x10 : ι → ι → ι . x1 (λ x11 . 0) 0)))) ⟶ (∀ x4 x5 . ∀ x6 : (((ι → ι) → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι → ι . ∀ x7 : (ι → ι) → (ι → ι → ι) → ι . x0 (λ x9 . x7 (λ x10 . setsum x9 (setsum 0 x9)) (λ x10 x11 . x3 (λ x12 x13 x14 . x14) (λ x12 . Inj1 (x0 (λ x13 . 0) (λ x13 . λ x14 : ι → ι → ι . 0))))) (λ x9 . λ x10 : ι → ι → ι . x10 (x0 (λ x11 . x10 (Inj1 0) x9) (λ x11 . λ x12 : ι → ι → ι . 0)) (x1 (λ x11 . 0) 0)) = x7 (λ x9 . setsum (Inj1 x9) (x2 (λ x10 : ι → ι → (ι → ι) → ι . λ x11 : ι → ι → ι . λ x12 . λ x13 : ι → ι . λ x14 . Inj0 (setsum 0 0)) (λ x10 x11 . x3 (λ x12 x13 x14 . 0) (λ x12 . 0)) (x0 (λ x10 . 0) (λ x10 . λ x11 : ι → ι → ι . x2 (λ x12 : ι → ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 . λ x15 : ι → ι . λ x16 . 0) (λ x12 x13 . 0) 0)))) (λ x9 x10 . setsum (x1 (λ x11 . x3 (λ x12 x13 x14 . Inj1 0) (λ x12 . x0 (λ x13 . 0) (λ x13 . λ x14 : ι → ι → ι . 0))) (Inj0 (x3 (λ x11 x12 x13 . 0) (λ x11 . 0)))) (x2 (λ x11 : ι → ι → (ι → ι) → ι . λ x12 : ι → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . x15) (λ x11 x12 . x0 (λ x13 . Inj0 0) (λ x13 . λ x14 : ι → ι → ι . 0)) (setsum 0 (x2 (λ x11 : ι → ι → (ι → ι) → ι . λ x12 : ι → ι → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x11 x12 . 0) 0))))) ⟶ False (proof)Theorem 5f591.. : ∀ x0 : (ι → ((ι → ι) → ι) → ι) → ((ι → ι) → ι) → ι → ((ι → ι) → ι) → ι . ∀ x1 : ((ι → ι → ι → ι) → ι → ι → ι) → ι → ι . ∀ x2 : (((((ι → ι) → ι) → ι) → ι → ι) → (((ι → ι) → ι) → ι) → ι) → ι → ι . ∀ x3 : (ι → ι) → ι → ι . (∀ x4 : (ι → ι) → ι → ι . ∀ x5 : (ι → ι) → ((ι → ι) → ι) → ι → ι → ι . ∀ x6 : ((ι → ι → ι) → ι) → (ι → ι) → (ι → ι) → ι → ι . ∀ x7 : ((ι → ι → ι) → ι) → ι . x3 (λ x9 . 0) (Inj0 (x6 (λ x9 : ι → ι → ι . x1 (λ x10 : ι → ι → ι → ι . λ x11 x12 . 0) (Inj1 0)) (λ x9 . x7 (λ x10 : ι → ι → ι . Inj1 0)) (λ x9 . Inj1 0) 0)) = x4 (λ x9 . x1 (λ x10 : ι → ι → ι → ι . λ x11 x12 . x10 0 0 (setsum (Inj1 0) 0)) (Inj1 0)) (x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . setsum (Inj1 0) (x10 (λ x11 : ι → ι . setsum 0 0))) 0)) ⟶ (∀ x4 : (((ι → ι) → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . ∀ x5 x6 x7 . x3 (λ x9 . x5) x6 = Inj0 (Inj0 (Inj0 x5))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 : ι → ι . x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . x6 (λ x11 . x10 (λ x12 : ι → ι . x9 (λ x13 : (ι → ι) → ι . x12 0) 0))) (Inj0 (Inj1 (Inj0 (Inj0 0)))) = x6 (λ x9 . setsum x5 x5)) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : (ι → ι → ι → ι) → ((ι → ι) → ι → ι) → ι . x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . Inj1 (x10 (λ x11 : ι → ι . Inj1 (x11 0)))) (x4 (x4 0)) = x4 (Inj0 (x4 (setsum (setsum 0 0) (x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . 0) 0))))) ⟶ (∀ x4 : (((ι → ι) → ι) → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι) → ι → ι) → ι . x1 (λ x9 : ι → ι → ι → ι . λ x10 x11 . x11) (x1 (λ x9 : ι → ι → ι → ι . λ x10 x11 . x11) (x4 (λ x9 : (ι → ι) → ι . λ x10 . Inj1 (x7 (λ x11 : ι → ι . λ x12 . 0))))) = setsum (Inj0 (x3 (λ x9 . setsum x6 0) (x3 (λ x9 . x7 (λ x10 : ι → ι . λ x11 . 0)) (Inj0 0)))) (Inj0 (x7 (λ x9 : ι → ι . λ x10 . x6)))) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 : ι → ι → ι → ι . λ x10 x11 . x3 (λ x12 . 0) (setsum 0 (Inj0 x7))) (x0 (λ x9 . λ x10 : (ι → ι) → ι . x9) (λ x9 : ι → ι . x7) x6 (λ x9 : ι → ι . x9 (x0 (λ x10 . λ x11 : (ι → ι) → ι . x3 (λ x12 . 0) 0) (λ x10 : ι → ι . 0) x6 (λ x10 : ι → ι . x1 (λ x11 : ι → ι → ι → ι . λ x12 x13 . 0) 0)))) = Inj1 (Inj0 0)) ⟶ (∀ x4 : (ι → (ι → ι) → ι → ι) → ι . ∀ x5 x6 x7 . x0 (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 : ι → ι . x5) (Inj0 x5) (λ x9 : ι → ι . x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → ι . λ x11 : ((ι → ι) → ι) → ι . 0) (Inj0 (Inj1 (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → ι . λ x11 : ((ι → ι) → ι) → ι . 0) 0)))) = Inj1 (x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . 0) x7)) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : (ι → (ι → ι) → ι → ι) → ι . ∀ x7 . x0 (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 : ι → ι . x0 (λ x10 . λ x11 : (ι → ι) → ι . x0 (λ x12 . λ x13 : (ι → ι) → ι . x0 (λ x14 . λ x15 : (ι → ι) → ι . setsum 0 0) (λ x14 : ι → ι . x0 (λ x15 . λ x16 : (ι → ι) → ι . 0) (λ x15 : ι → ι . 0) 0 (λ x15 : ι → ι . 0)) (setsum 0 0) (λ x14 : ι → ι . Inj0 0)) (λ x12 : ι → ι . setsum (Inj1 0) (x3 (λ x13 . 0) 0)) 0 (λ x12 : ι → ι . setsum (x11 (λ x13 . 0)) (x9 0))) (λ x10 : ι → ι . 0) 0 (λ x10 : ι → ι . 0)) 0 (λ x9 : ι → ι . x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → ι . λ x11 : ((ι → ι) → ι) → ι . x2 (λ x12 : (((ι → ι) → ι) → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . 0) 0) (x3 (λ x10 . x3 (λ x11 . x10) (Inj1 0)) 0)) = Inj1 0) ⟶ False (proof)Theorem e23c1.. : ∀ x0 : (ι → ι) → ι → ι . ∀ x1 : ((ι → (ι → ι) → ι → ι → ι) → ((ι → ι → ι) → ι) → (ι → ι) → (ι → ι) → ι) → (((ι → ι → ι) → ι) → ι) → ι . ∀ x2 : (ι → ι) → (((ι → ι) → ι) → (ι → ι) → (ι → ι) → ι) → ι → ι → ι → ι . ∀ x3 : (((ι → ι) → ι) → (((ι → ι) → ι → ι) → ι → ι) → ι → ι) → ι → ι . (∀ x4 x5 . ∀ x6 x7 : ι → ι . x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . x9 (λ x12 . x2 (λ x13 . x13) (λ x13 : (ι → ι) → ι . λ x14 x15 : ι → ι . Inj1 (x2 (λ x16 . 0) (λ x16 : (ι → ι) → ι . λ x17 x18 : ι → ι . 0) 0 0 0)) (setsum 0 0) (Inj1 (x2 (λ x13 . 0) (λ x13 : (ι → ι) → ι . λ x14 x15 : ι → ι . 0) 0 0 0)) (x1 (λ x13 : ι → (ι → ι) → ι → ι → ι . λ x14 : (ι → ι → ι) → ι . λ x15 x16 : ι → ι . 0) (λ x13 : (ι → ι → ι) → ι . x0 (λ x14 . 0) 0)))) x4 = Inj1 (x6 0)) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 . ∀ x7 : ι → (ι → ι) → (ι → ι) → ι → ι . x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . 0) (Inj0 (x1 (λ x9 : ι → (ι → ι) → ι → ι → ι . λ x10 : (ι → ι → ι) → ι . λ x11 x12 : ι → ι . x2 (λ x13 . setsum 0 0) (λ x13 : (ι → ι) → ι . λ x14 x15 : ι → ι . x15 0) (setsum 0 0) 0 0) (λ x9 : (ι → ι → ι) → ι . x7 (x1 (λ x10 : ι → (ι → ι) → ι → ι → ι . λ x11 : (ι → ι → ι) → ι . λ x12 x13 : ι → ι . 0) (λ x10 : (ι → ι → ι) → ι . 0)) (λ x10 . 0) (λ x10 . setsum 0 0) 0))) = x4) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 . 0) (λ x9 : (ι → ι) → ι . λ x10 x11 : ι → ι . x11 (Inj1 (x11 (x9 (λ x12 . 0))))) (setsum (Inj1 x7) (Inj1 x4)) 0 0 = setsum (setsum (x0 (λ x9 . setsum (Inj1 0) 0) (x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . Inj0 0) 0)) x6) x5) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → ι → (ι → ι) → ι → ι . ∀ x7 . x2 (λ x9 . x1 (λ x10 : ι → (ι → ι) → ι → ι → ι . λ x11 : (ι → ι → ι) → ι . λ x12 x13 : ι → ι . x0 (λ x14 . x1 (λ x15 : ι → (ι → ι) → ι → ι → ι . λ x16 : (ι → ι → ι) → ι . λ x17 x18 : ι → ι . setsum 0 0) (λ x15 : (ι → ι → ι) → ι . 0)) (Inj0 (x2 (λ x14 . 0) (λ x14 : (ι → ι) → ι . λ x15 x16 : ι → ι . 0) 0 0 0))) (λ x10 : (ι → ι → ι) → ι . x7)) (λ x9 : (ι → ι) → ι . λ x10 x11 : ι → ι . x1 (λ x12 : ι → (ι → ι) → ι → ι → ι . λ x13 : (ι → ι → ι) → ι . λ x14 x15 : ι → ι . x0 (λ x16 . 0) (x1 (λ x16 : ι → (ι → ι) → ι → ι → ι . λ x17 : (ι → ι → ι) → ι . λ x18 x19 : ι → ι . 0) (λ x16 : (ι → ι → ι) → ι . x2 (λ x17 . 0) (λ x17 : (ι → ι) → ι . λ x18 x19 : ι → ι . 0) 0 0 0))) (λ x12 : (ι → ι → ι) → ι . 0)) (setsum 0 (x5 (Inj0 0))) (x5 (x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . x10 (λ x12 : ι → ι . λ x13 . 0) (x3 (λ x12 : (ι → ι) → ι . λ x13 : ((ι → ι) → ι → ι) → ι → ι . λ x14 . 0) 0)) 0)) (setsum (Inj0 0) x4) = x5 (x5 (x6 (setsum (x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → ι → ι . λ x11 . 0) 0) 0) (x1 (λ x9 : ι → (ι → ι) → ι → ι → ι . λ x10 : (ι → ι → ι) → ι . λ x11 x12 : ι → ι . x11 0) (λ x9 : (ι → ι → ι) → ι . Inj1 0)) (λ x9 . Inj1 0) (x1 (λ x9 : ι → (ι → ι) → ι → ι → ι . λ x10 : (ι → ι → ι) → ι . λ x11 x12 : ι → ι . 0) (λ x9 : (ι → ι → ι) → ι . 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ((ι → ι) → ι) → ι . ∀ x6 x7 . x1 (λ x9 : ι → (ι → ι) → ι → ι → ι . λ x10 : (ι → ι → ι) → ι . λ x11 x12 : ι → ι . x11 0) (λ x9 : (ι → ι → ι) → ι . Inj1 0) = x5 (Inj0 x7) (λ x9 : ι → ι . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι → ι) → ι → ι . λ x12 . 0) 0)) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → ι . x1 (λ x9 : ι → (ι → ι) → ι → ι → ι . λ x10 : (ι → ι → ι) → ι . λ x11 x12 : ι → ι . x1 (λ x13 : ι → (ι → ι) → ι → ι → ι . λ x14 : (ι → ι → ι) → ι . λ x15 x16 : ι → ι . Inj0 0) (λ x13 : (ι → ι → ι) → ι . 0)) (λ x9 : (ι → ι → ι) → ι . x9 (λ x10 x11 . setsum (Inj1 0) (x0 (λ x12 . 0) (x1 (λ x12 : ι → (ι → ι) → ι → ι → ι . λ x13 : (ι → ι → ι) → ι . λ x14 x15 : ι → ι . 0) (λ x12 : (ι → ι → ι) → ι . 0))))) = x1 (λ x9 : ι → (ι → ι) → ι → ι → ι . λ x10 : (ι → ι → ι) → ι . λ x11 x12 : ι → ι . setsum (x10 (λ x13 x14 . x13)) 0) (λ x9 : (ι → ι → ι) → ι . x0 (λ x10 . 0) (x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι → ι) → ι → ι . λ x12 . 0) (setsum (setsum 0 0) (x2 (λ x10 . 0) (λ x10 : (ι → ι) → ι . λ x11 x12 : ι → ι . 0) 0 0 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 : ι → (ι → ι → ι) → ι → ι . ∀ x6 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι . ∀ x7 : (ι → (ι → ι) → ι) → (ι → ι) → ι . x0 (λ x9 . Inj1 (x6 (λ x10 : (ι → ι) → ι → ι . λ x11 x12 . x2 (λ x13 . x12) (λ x13 : (ι → ι) → ι . λ x14 x15 : ι → ι . 0) 0 (setsum 0 0) x11))) (x6 (λ x9 : (ι → ι) → ι → ι . λ x10 x11 . x1 (λ x12 : ι → (ι → ι) → ι → ι → ι . λ x13 : (ι → ι → ι) → ι . λ x14 x15 : ι → ι . x13 (λ x16 x17 . x3 (λ x18 : (ι → ι) → ι . λ x19 : ((ι → ι) → ι → ι) → ι → ι . λ x20 . 0) 0)) (λ x12 : (ι → ι → ι) → ι . 0))) = setsum 0 (x0 (λ x9 . setsum 0 0) 0)) ⟶ (∀ x4 : ι → ι . ∀ x5 : ((ι → ι → ι) → ι → ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x0 (λ x9 . setsum (x1 (λ x10 : ι → (ι → ι) → ι → ι → ι . λ x11 : (ι → ι → ι) → ι . λ x12 x13 : ι → ι . x13 (setsum 0 0)) (λ x10 : (ι → ι → ι) → ι . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι → ι) → ι → ι . λ x13 . x1 (λ x14 : ι → (ι → ι) → ι → ι → ι . λ x15 : (ι → ι → ι) → ι . λ x16 x17 : ι → ι . 0) (λ x14 : (ι → ι → ι) → ι . 0)) (x7 0 0))) (setsum 0 (x0 (λ x10 . x7 0 0) 0))) 0 = setsum 0 (x4 (x7 (x1 (λ x9 : ι → (ι → ι) → ι → ι → ι . λ x10 : (ι → ι → ι) → ι . λ x11 x12 : ι → ι . x11 0) (λ x9 : (ι → ι → ι) → ι . Inj0 0)) (x5 (λ x9 : ι → ι → ι . λ x10 x11 . Inj1 0))))) ⟶ False (proof)Theorem 526d3.. : ∀ x0 : (ι → ι) → ι → ι → ι . ∀ x1 : (ι → ι → ι) → ι → ι . ∀ x2 : (ι → ((ι → ι) → ι → ι → ι) → ι) → ι → ((ι → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x3 : (((ι → ι → ι) → ι → ι) → ι) → (ι → ((ι → ι) → ι → ι) → ι → ι) → ι → ι . (∀ x4 . ∀ x5 x6 x7 : ι → ι . x3 (λ x9 : (ι → ι → ι) → ι → ι . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . setsum 0 0) 0 (λ x10 : ι → ι . x10 0) (λ x10 : ι → ι . x3 (λ x11 : (ι → ι → ι) → ι → ι . setsum (Inj1 0) (Inj0 0)) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . setsum (x10 0) (setsum 0 0)) 0)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x0 (λ x12 . Inj0 (x2 (λ x13 . λ x14 : (ι → ι) → ι → ι → ι . 0) (setsum 0 0) (λ x13 : ι → ι . 0) (λ x13 : ι → ι . x12))) (Inj0 (x10 (λ x12 . x0 (λ x13 . 0) 0 0) (x10 (λ x12 . 0) 0))) (setsum 0 (Inj1 (Inj1 0)))) (x7 (x7 (setsum (setsum 0 0) x4))) = x7 (Inj1 x4)) ⟶ (∀ x4 x5 x6 x7 . x3 (λ x9 : (ι → ι → ι) → ι → ι . x7) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) 0 = x7) ⟶ (∀ x4 : (((ι → ι) → ι) → ι) → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → (ι → ι) → (ι → ι) → ι . ∀ x7 . x2 (λ x9 . λ x10 : (ι → ι) → ι → ι → ι . setsum (Inj1 (x6 (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . x0 (λ x14 . 0) 0 0) (λ x11 . x7) (λ x11 . x2 (λ x12 . λ x13 : (ι → ι) → ι → ι → ι . 0) 0 (λ x12 : ι → ι . 0) (λ x12 : ι → ι . 0)))) (Inj0 (x1 (λ x11 x12 . x1 (λ x13 x14 . 0) 0) (setsum 0 0)))) (x4 (λ x9 : (ι → ι) → ι . setsum (x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . setsum 0 0) x5 (λ x10 : ι → ι . x7) (λ x10 : ι → ι . x7)) (Inj0 (x6 (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . 0) (λ x10 . 0) (λ x10 . 0))))) (λ x9 : ι → ι . 0) (λ x9 : ι → ι . x1 (λ x10 x11 . 0) x7) = setsum 0 (x6 (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x9 (λ x12 . x3 (λ x13 : (ι → ι → ι) → ι → ι . x1 (λ x14 x15 . 0) 0) (λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 . x14 (λ x16 . 0) 0) (x3 (λ x13 : (ι → ι → ι) → ι → ι . 0) (λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 . 0) 0)) 0) (λ x9 . 0) (λ x9 . setsum (x3 (λ x10 : (ι → ι → ι) → ι → ι . x1 (λ x11 x12 . 0) 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . x10) x9) (Inj0 (setsum 0 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 x7 : ι → ι . x2 (λ x9 . λ x10 : (ι → ι) → ι → ι → ι . x9) (x0 (λ x9 . Inj0 x5) x5 0) (λ x9 : ι → ι . x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0) (λ x9 : ι → ι . x1 (λ x10 x11 . x10) (setsum 0 (setsum (x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0) 0))) = setsum (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x3 (λ x12 : (ι → ι → ι) → ι → ι . x12 (λ x13 x14 . x0 (λ x15 . 0) 0 0) x9) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . Inj0 (x13 (λ x15 . 0) 0)) x9) (x0 (λ x9 . x5) (x1 (λ x9 x10 . Inj0 0) (x7 0)) (x3 (λ x9 : (ι → ι → ι) → ι → ι . setsum 0 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x11) (x0 (λ x9 . 0) 0 0)))) 0) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 x6 . ∀ x7 : (ι → ι → ι → ι) → ι . x1 (λ x9 x10 . 0) 0 = x5) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 : ((ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x6 . ∀ x7 : ((ι → ι) → (ι → ι) → ι) → (ι → ι → ι) → ι → ι → ι . x1 (λ x9 x10 . setsum 0 0) (x1 (λ x9 x10 . 0) (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (x2 (λ x9 . λ x10 : (ι → ι) → ι → ι → ι . Inj1 0) 0 (λ x9 : ι → ι . x6) (λ x9 : ι → ι . Inj0 0)))) = setsum 0 (x4 (λ x9 . Inj0 (setsum x6 0)))) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι → ι) → ι . ∀ x6 : (((ι → ι) → ι → ι) → ι) → ι . ∀ x7 . x0 (λ x9 . x9) (x0 (λ x9 . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . 0) (setsum 0 0) (λ x10 : ι → ι . Inj0 (x0 (λ x11 . 0) 0 0)) (λ x10 : ι → ι . 0)) (x6 (λ x9 : (ι → ι) → ι → ι . Inj1 (Inj1 0))) (setsum 0 (Inj0 0))) (x3 (λ x9 : (ι → ι → ι) → ι → ι . x7) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x2 (λ x12 . λ x13 : (ι → ι) → ι → ι → ι . 0) (setsum 0 (x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . 0) 0)) (λ x12 : ι → ι . Inj1 (setsum 0 0)) (λ x12 : ι → ι . setsum (x1 (λ x13 x14 . 0) 0) (x10 (λ x13 . 0) 0))) (Inj1 (Inj1 (setsum 0 0)))) = x3 (λ x9 : (ι → ι → ι) → ι → ι . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . x7) 0 (λ x10 : ι → ι . x3 (λ x11 : (ι → ι → ι) → ι → ι . 0) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . 0) (x10 (x3 (λ x11 : (ι → ι → ι) → ι → ι . 0) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . 0) 0))) (λ x10 : ι → ι . x3 (λ x11 : (ι → ι → ι) → ι → ι . x10 (x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . 0) 0)) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . x2 (λ x14 . λ x15 : (ι → ι) → ι → ι → ι . x3 (λ x16 : (ι → ι → ι) → ι → ι . 0) (λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 . 0) 0) (x12 (λ x14 . 0) 0) (λ x14 : ι → ι . x3 (λ x15 : (ι → ι → ι) → ι → ι . 0) (λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 . 0) 0) (λ x14 : ι → ι . Inj1 0)) (setsum (Inj0 0) 0))) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x9) (x3 (λ x9 : (ι → ι → ι) → ι → ι . x9 (λ x10 x11 . x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . x11) (Inj0 0)) (setsum 0 x7)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (x0 (λ x9 . Inj1 0) (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (Inj1 0)) (Inj0 0)))) ⟶ (∀ x4 : (((ι → ι) → ι) → ι) → ι → ι . ∀ x5 : (ι → ι) → ((ι → ι) → ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → ι) → (ι → ι → ι) → (ι → ι) → ι → ι . x0 (λ x9 . x6) (x4 (λ x9 : (ι → ι) → ι . 0) (setsum (x7 (λ x9 . x6) (λ x9 x10 . x1 (λ x11 x12 . 0) 0) (λ x9 . x5 (λ x10 . 0) (λ x10 : ι → ι . λ x11 . 0)) (x7 (λ x9 . 0) (λ x9 x10 . 0) (λ x9 . 0) 0)) 0)) (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (x4 (λ x9 : (ι → ι) → ι . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . Inj0 0) (x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0) (λ x10 : ι → ι . Inj0 0) (λ x10 : ι → ι . 0)) (x4 (λ x9 : (ι → ι) → ι . x7 (λ x10 . 0) (λ x10 x11 . 0) (λ x10 . 0) 0) (x7 (λ x9 . 0) (λ x9 x10 . 0) (λ x9 . 0) 0)))) = Inj1 (x0 (λ x9 . x7 (λ x10 . Inj1 0) (λ x10 x11 . Inj1 0) (λ x10 . x7 (λ x11 . x7 (λ x12 . 0) (λ x12 x13 . 0) (λ x12 . 0) 0) (λ x11 x12 . Inj1 0) (λ x11 . 0) (x0 (λ x11 . 0) 0 0)) x6) (x0 (λ x9 . x7 (λ x10 . x9) (λ x10 x11 . x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . 0) 0) (λ x10 . setsum 0 0) (x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0)) (x0 (λ x9 . 0) (setsum 0 0) 0) x6) 0)) ⟶ False (proof)Theorem 2212e.. : ∀ x0 : ((ι → ((ι → ι) → ι) → (ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . ∀ x1 : ((((ι → ι → ι) → ι → ι) → ι) → ι) → ι → ι . ∀ x2 : (ι → ι) → (ι → ι) → (((ι → ι) → ι) → ι) → ι . ∀ x3 : (ι → ι) → (ι → ι) → ((ι → ι) → ι → ι → ι) → ι . (∀ x4 : (ι → ι) → ι . ∀ x5 : (ι → ι) → ι → ι → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι . x3 (λ x9 . x2 (λ x10 . x7 (Inj0 (Inj0 0)) x9 (setsum (setsum 0 0) 0)) (λ x10 . x10) (λ x10 : (ι → ι) → ι . Inj0 (setsum (x3 (λ x11 . 0) (λ x11 . 0) (λ x11 : ι → ι . λ x12 x13 . 0)) (x3 (λ x11 . 0) (λ x11 . 0) (λ x11 : ι → ι . λ x12 x13 . 0))))) (λ x9 . 0) (λ x9 : ι → ι . λ x10 x11 . x7 0 x10 (Inj0 (x1 (λ x12 : ((ι → ι → ι) → ι → ι) → ι . Inj0 0) (Inj0 0)))) = x2 (λ x9 . Inj0 (x1 (λ x10 : ((ι → ι → ι) → ι → ι) → ι . 0) (x0 (λ x10 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . Inj0 0) (λ x10 : ι → ι . λ x11 . 0) (x2 (λ x10 . 0) (λ x10 . 0) (λ x10 : (ι → ι) → ι . 0)) (λ x10 : ι → ι . 0) (λ x10 . setsum 0 0) (x7 0 0 0)))) (λ x9 . Inj1 0) (λ x9 : (ι → ι) → ι . Inj0 (x2 (λ x10 . setsum (Inj0 0) (setsum 0 0)) (λ x10 . x6 (setsum 0 0)) (λ x10 : (ι → ι) → ι . Inj0 (x9 (λ x11 . 0)))))) ⟶ (∀ x4 x5 : ι → ι . ∀ x6 : ι → (ι → ι → ι) → (ι → ι) → ι . ∀ x7 . x3 (λ x9 . Inj1 (x3 (λ x10 . x0 (λ x11 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x11 : ι → ι . λ x12 . x11 0) (x2 (λ x11 . 0) (λ x11 . 0) (λ x11 : (ι → ι) → ι . 0)) (λ x11 : ι → ι . x0 (λ x12 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x12 : ι → ι . λ x13 . 0) 0 (λ x12 : ι → ι . 0) (λ x12 . 0) 0) (λ x11 . x9) (Inj1 0)) (λ x10 . x2 (λ x11 . 0) (λ x11 . x11) (λ x11 : (ι → ι) → ι . x1 (λ x12 : ((ι → ι → ι) → ι → ι) → ι . 0) 0)) (λ x10 : ι → ι . λ x11 x12 . x2 (λ x13 . x11) (λ x13 . Inj1 0) (λ x13 : (ι → ι) → ι . 0)))) (λ x9 . x6 (x2 (λ x10 . x6 (x3 (λ x11 . 0) (λ x11 . 0) (λ x11 : ι → ι . λ x12 x13 . 0)) (λ x11 x12 . 0) (λ x11 . Inj1 0)) (λ x10 . x9) (λ x10 : (ι → ι) → ι . x10 (λ x11 . 0))) (λ x10 x11 . setsum 0 x9) (λ x10 . 0)) (λ x9 : ι → ι . λ x10 x11 . 0) = x6 (Inj1 (x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . x9 (λ x10 : ι → ι → ι . λ x11 . 0)) (Inj1 (x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . 0) 0)))) (λ x9 x10 . setsum 0 x7) (λ x9 . setsum (x3 (λ x10 . setsum 0 (x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . 0) 0)) (λ x10 . x0 (λ x11 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . x0 (λ x12 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x12 : ι → ι . λ x13 . 0) 0 (λ x12 : ι → ι . 0) (λ x12 . 0) 0) (λ x11 : ι → ι . λ x12 . 0) (Inj0 0) (λ x11 : ι → ι . x10) (λ x11 . x3 (λ x12 . 0) (λ x12 . 0) (λ x12 : ι → ι . λ x13 x14 . 0)) (x6 0 (λ x11 x12 . 0) (λ x11 . 0))) (λ x10 : ι → ι . λ x11 x12 . x0 (λ x13 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . setsum 0 0) (λ x13 : ι → ι . λ x14 . 0) (x3 (λ x13 . 0) (λ x13 . 0) (λ x13 : ι → ι . λ x14 x15 . 0)) (λ x13 : ι → ι . Inj1 0) (λ x13 . x2 (λ x14 . 0) (λ x14 . 0) (λ x14 : (ι → ι) → ι . 0)) (x10 0))) 0)) ⟶ (∀ x4 : (ι → ι → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : (((ι → ι) → ι) → ι) → ι → ι . x2 (λ x9 . 0) (λ x9 . x9) (λ x9 : (ι → ι) → ι . setsum (x2 (λ x10 . x3 (λ x11 . setsum 0 0) (λ x11 . x2 (λ x12 . 0) (λ x12 . 0) (λ x12 : (ι → ι) → ι . 0)) (λ x11 : ι → ι . λ x12 x13 . x13)) (λ x10 . x3 (λ x11 . setsum 0 0) (λ x11 . setsum 0 0) (λ x11 : ι → ι . λ x12 x13 . 0)) (λ x10 : (ι → ι) → ι . x2 (λ x11 . Inj1 0) (λ x11 . Inj0 0) (λ x11 : (ι → ι) → ι . Inj0 0))) (setsum x5 (x0 (λ x10 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . Inj0 0) (λ x10 : ι → ι . λ x11 . Inj1 0) (x2 (λ x10 . 0) (λ x10 . 0) (λ x10 : (ι → ι) → ι . 0)) (λ x10 : ι → ι . x6) (λ x10 . x6) (x7 (λ x10 : (ι → ι) → ι . 0) 0)))) = x4 (λ x9 x10 x11 . Inj1 (setsum x11 (Inj1 0)))) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 . x6) (λ x9 . 0) (λ x9 : (ι → ι) → ι . x5) = setsum x5 (x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . x3 (λ x10 . 0) (λ x10 . x7) (λ x10 : ι → ι . λ x11 x12 . x9 (λ x13 : ι → ι → ι . λ x14 . x0 (λ x15 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x15 : ι → ι . λ x16 . 0) 0 (λ x15 : ι → ι . 0) (λ x15 . 0) 0))) x4)) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι → ι) → ι . ∀ x6 : ι → ι → ι . ∀ x7 : ι → ι . x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . setsum (setsum 0 (Inj1 (x1 (λ x10 : ((ι → ι → ι) → ι → ι) → ι . 0) 0))) (Inj1 (x3 (λ x10 . x10) (λ x10 . 0) (λ x10 : ι → ι . λ x11 x12 . setsum 0 0)))) (setsum (setsum 0 (x3 (λ x9 . x9) (λ x9 . x7 0) (λ x9 : ι → ι . λ x10 x11 . 0))) (x6 (setsum 0 (x5 (λ x9 x10 x11 . 0))) (setsum (setsum 0 0) (x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . 0) 0)))) = Inj0 0) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 x6 x7 . x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . Inj1 x6) (Inj1 (setsum 0 0)) = setsum 0 0) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ((ι → ι) → ι) → ι → ι → ι . x0 (λ x9 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x9 : ι → ι . λ x10 . x0 (λ x11 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . Inj1 (x9 0)) (λ x11 : ι → ι . λ x12 . x1 (λ x13 : ((ι → ι → ι) → ι → ι) → ι . 0) (x0 (λ x13 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x13 : ι → ι . λ x14 . Inj0 0) 0 (λ x13 : ι → ι . 0) (λ x13 . Inj0 0) (setsum 0 0))) (x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . Inj1 (x9 0)) (setsum (x7 0 (λ x11 : ι → ι . 0) 0 0) (setsum 0 0))) (λ x11 : ι → ι . x11 0) (λ x11 . x2 (λ x12 . 0) (λ x12 . x2 (λ x13 . 0) (λ x13 . 0) (λ x13 : (ι → ι) → ι . x1 (λ x14 : ((ι → ι → ι) → ι → ι) → ι . 0) 0)) (λ x12 : (ι → ι) → ι . Inj0 0)) (x9 (x9 (setsum 0 0)))) 0 (λ x9 : ι → ι . x2 (λ x10 . x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . setsum (setsum 0 0) (x11 (λ x12 : ι → ι → ι . λ x13 . 0))) 0) (λ x10 . Inj1 (x2 (λ x11 . 0) (λ x11 . x11) (λ x11 : (ι → ι) → ι . x2 (λ x12 . 0) (λ x12 . 0) (λ x12 : (ι → ι) → ι . 0)))) (λ x10 : (ι → ι) → ι . setsum 0 (x0 (λ x11 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . x1 (λ x12 : ((ι → ι → ι) → ι → ι) → ι . 0) 0) (λ x11 : ι → ι . λ x12 . x1 (λ x13 : ((ι → ι → ι) → ι → ι) → ι . 0) 0) (x7 0 (λ x11 : ι → ι . 0) 0 0) (λ x11 : ι → ι . setsum 0 0) (λ x11 . 0) (x3 (λ x11 . 0) (λ x11 . 0) (λ x11 : ι → ι . λ x12 x13 . 0))))) (λ x9 . setsum (Inj1 0) 0) (x3 (λ x9 . Inj0 x6) (λ x9 . Inj1 0) (λ x9 : ι → ι . λ x10 x11 . 0)) = setsum x6 (setsum (Inj1 (x2 (λ x9 . x1 (λ x10 : ((ι → ι → ι) → ι → ι) → ι . 0) 0) (λ x9 . x2 (λ x10 . 0) (λ x10 . 0) (λ x10 : (ι → ι) → ι . 0)) (λ x9 : (ι → ι) → ι . 0))) 0)) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι → ι . ∀ x6 : ((ι → ι) → ι) → ι . ∀ x7 : ι → ι . x0 (λ x9 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . 0) (λ x9 : ι → ι . λ x10 . 0) (x0 (λ x9 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . x0 (λ x10 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . setsum (x2 (λ x11 . 0) (λ x11 . 0) (λ x11 : (ι → ι) → ι . 0)) (x10 0 (λ x11 : ι → ι . 0) (λ x11 . 0) 0)) (λ x10 : ι → ι . λ x11 . setsum 0 (setsum 0 0)) (x2 (λ x10 . 0) (λ x10 . x6 (λ x11 : ι → ι . 0)) (λ x10 : (ι → ι) → ι . 0)) (λ x10 : ι → ι . setsum (x6 (λ x11 : ι → ι . 0)) 0) (λ x10 . setsum x10 (x9 0 (λ x11 : ι → ι . 0) (λ x11 . 0) 0)) (Inj1 0)) (λ x9 : ι → ι . λ x10 . 0) 0 (λ x9 : ι → ι . x3 (λ x10 . 0) (λ x10 . x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . Inj0 0) (setsum 0 0)) (λ x10 : ι → ι . λ x11 x12 . 0)) (λ x9 . Inj1 (x1 (λ x10 : ((ι → ι → ι) → ι → ι) → ι . Inj1 0) (x2 (λ x10 . 0) (λ x10 . 0) (λ x10 : (ι → ι) → ι . 0)))) (x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . x3 (λ x10 . x9 (λ x11 : ι → ι → ι . λ x12 . 0)) (λ x10 . x7 0) (λ x10 : ι → ι . λ x11 x12 . x3 (λ x13 . 0) (λ x13 . 0) (λ x13 : ι → ι . λ x14 x15 . 0))) (x6 (λ x9 : ι → ι . 0)))) (λ x9 : ι → ι . x1 (λ x10 : ((ι → ι → ι) → ι → ι) → ι . x0 (λ x11 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . x10 (λ x12 : ι → ι → ι . λ x13 . 0)) (λ x11 : ι → ι . λ x12 . x11 0) (x7 (x3 (λ x11 . 0) (λ x11 . 0) (λ x11 : ι → ι . λ x12 x13 . 0))) (λ x11 : ι → ι . 0) (λ x11 . 0) (x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . Inj0 0) (x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . 0) 0))) (x6 (λ x10 : ι → ι . Inj1 (x10 0)))) (λ x9 . 0) (x3 (λ x9 . 0) (λ x9 . x1 (λ x10 : ((ι → ι → ι) → ι → ι) → ι . Inj1 (setsum 0 0)) (x1 (λ x10 : ((ι → ι → ι) → ι → ι) → ι . x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . 0) 0) (Inj1 0))) (λ x9 : ι → ι . λ x10 x11 . x9 (x0 (λ x12 : ι → ((ι → ι) → ι) → (ι → ι) → ι → ι . x11) (λ x12 : ι → ι . λ x13 . 0) (x1 (λ x12 : ((ι → ι → ι) → ι → ι) → ι . 0) 0) (λ x12 : ι → ι . x1 (λ x13 : ((ι → ι → ι) → ι → ι) → ι . 0) 0) (λ x12 . setsum 0 0) x10))) = setsum (x1 (λ x9 : ((ι → ι → ι) → ι → ι) → ι . x9 (λ x10 : ι → ι → ι . λ x11 . Inj0 (x9 (λ x12 : ι → ι → ι . λ x13 . 0)))) (Inj1 x4)) (x2 (λ x9 . 0) (λ x9 . x2 (λ x10 . 0) (λ x10 . 0) (λ x10 : (ι → ι) → ι . x3 (λ x11 . x11) (λ x11 . 0) (λ x11 : ι → ι . λ x12 x13 . setsum 0 0))) (λ x9 : (ι → ι) → ι . x9 (λ x10 . x7 (x1 (λ x11 : ((ι → ι → ι) → ι → ι) → ι . 0) 0))))) ⟶ False (proof)Theorem 002b7.. : ∀ x0 : (((ι → ι → ι) → ι) → ι) → ((ι → ι) → ι → ι → ι → ι) → ι . ∀ x1 : (ι → ι) → ι → ι . ∀ x2 : (ι → ((ι → ι) → ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x3 : (ι → ι) → ι → ι . (∀ x4 : ((ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → (ι → ι → ι) → (ι → ι) → ι → ι . x3 (λ x9 . setsum x9 (x1 (λ x10 . 0) 0)) (x0 (λ x9 : (ι → ι → ι) → ι . x0 (λ x10 : (ι → ι → ι) → ι . x2 (λ x11 . λ x12 : (ι → ι) → ι → ι . x11) (x1 (λ x11 . 0) 0) (λ x11 . Inj0 0)) (λ x10 : ι → ι . λ x11 x12 x13 . 0)) (λ x9 : ι → ι . λ x10 x11 x12 . x9 (Inj1 x12))) = Inj0 (x0 (λ x9 : (ι → ι → ι) → ι . Inj1 (x0 (λ x10 : (ι → ι → ι) → ι . 0) (λ x10 : ι → ι . λ x11 x12 x13 . x10 0))) (λ x9 : ι → ι . λ x10 x11 x12 . 0))) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → ι → ι) → ((ι → ι) → ι) → ι . ∀ x5 : ι → ((ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 . setsum 0 (x2 (λ x10 . λ x11 : (ι → ι) → ι → ι . x2 (λ x12 . λ x13 : (ι → ι) → ι → ι . x2 (λ x14 . λ x15 : (ι → ι) → ι → ι . 0) 0 (λ x14 . 0)) (Inj1 0) (λ x12 . x0 (λ x13 : (ι → ι → ι) → ι . 0) (λ x13 : ι → ι . λ x14 x15 x16 . 0))) x7 (λ x10 . x6 0))) (setsum (x3 (setsum x7) x7) (setsum (x2 (λ x9 . λ x10 : (ι → ι) → ι → ι . x10 (λ x11 . 0) 0) (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 . 0) (λ x9 : ι → ι . 0)) (λ x9 . x7)) (x1 (λ x9 . setsum 0 0) 0))) = setsum (x0 (λ x9 : (ι → ι → ι) → ι . x3 (λ x10 . x3 (λ x11 . x1 (λ x12 . 0) 0) (x6 0)) 0) (λ x9 : ι → ι . λ x10 x11 x12 . Inj0 0)) x7) ⟶ (∀ x4 : (ι → (ι → ι) → ι) → ι . ∀ x5 x6 . ∀ x7 : (ι → ι) → ι . x2 (λ x9 . λ x10 : (ι → ι) → ι → ι . Inj1 0) (setsum x5 (Inj1 x5)) Inj1 = Inj1 (x3 (λ x9 . 0) (x2 (λ x9 . λ x10 : (ι → ι) → ι → ι . x2 (λ x11 . λ x12 : (ι → ι) → ι → ι . 0) x6 (λ x11 . x11)) 0 (λ x9 . x9)))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : (ι → ι → ι → ι) → (ι → ι) → ι . ∀ x7 : ι → ι . x2 (λ x9 . λ x10 : (ι → ι) → ι → ι . Inj1 (setsum (x10 (λ x11 . x3 (λ x12 . 0) 0) 0) (setsum (x10 (λ x11 . 0) 0) (x3 (λ x11 . 0) 0)))) (x7 0) (λ x9 . Inj0 (setsum 0 (Inj1 (setsum 0 0)))) = x7 (Inj1 (x5 0))) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 . x5) x6 = Inj0 0) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 . setsum 0 (setsum (x1 (λ x10 . x2 (λ x11 . λ x12 : (ι → ι) → ι → ι . 0) 0 (λ x11 . 0)) 0) (x2 (λ x10 . λ x11 : (ι → ι) → ι → ι . x3 (λ x12 . 0) 0) (setsum 0 0) (λ x10 . x0 (λ x11 : (ι → ι → ι) → ι . 0) (λ x11 : ι → ι . λ x12 x13 x14 . 0))))) 0 = x7) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 . ∀ x6 : (ι → ι) → ((ι → ι) → ι) → ι . ∀ x7 . x0 (λ x9 : (ι → ι → ι) → ι . 0) (λ x9 : ι → ι . λ x10 x11 x12 . x12) = Inj0 x5) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x0 (λ x9 : (ι → ι → ι) → ι . 0) (λ x9 : ι → ι . λ x10 x11 x12 . x9 (setsum (x3 (λ x13 . setsum 0 0) (x2 (λ x13 . λ x14 : (ι → ι) → ι → ι . 0) 0 (λ x13 . 0))) (x9 x11))) = x5) ⟶ False (proof)Theorem 8f084.. : ∀ x0 : ((ι → ((ι → ι) → ι → ι) → ι) → ι) → (ι → ι) → (ι → ι) → ι → (ι → ι) → ι . ∀ x1 : (ι → (ι → ι → ι) → ι) → (ι → ι) → ι . ∀ x2 : ((((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι) → ι) → ι → (((ι → ι) → ι → ι) → ι) → ι . ∀ x3 : (((ι → ι) → ι) → (((ι → ι) → ι) → ι → ι → ι) → (ι → ι) → ι) → ((((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι) → ι . (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → (ι → ι → ι) → ι → ι . ∀ x7 : (ι → ι) → ι . x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι → ι → ι . λ x11 : ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . x10) = x4 0) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι → ι → ι . λ x11 : ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι → ι → ι . λ x13 : ι → ι . x0 (λ x14 : ι → ((ι → ι) → ι → ι) → ι . x0 (λ x15 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x15 . setsum 0 0) (λ x15 . 0) (x0 (λ x15 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x15 . 0) (λ x15 . 0) 0 (λ x15 . 0)) (λ x15 . x3 (λ x16 : (ι → ι) → ι . λ x17 : ((ι → ι) → ι) → ι → ι → ι . λ x18 : ι → ι . 0) (λ x16 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x17 . 0))) (λ x14 . x13 0) (λ x14 . x3 (λ x15 : (ι → ι) → ι . λ x16 : ((ι → ι) → ι) → ι → ι → ι . λ x17 : ι → ι . 0) (λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x16 . 0)) (x2 (λ x14 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) (x2 (λ x14 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) 0 (λ x14 : (ι → ι) → ι → ι . 0)) (λ x14 : (ι → ι) → ι → ι . Inj0 0)) (λ x14 . 0)) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . 0)) = setsum x4 0) ⟶ (∀ x4 : ι → ((ι → ι) → ι) → (ι → ι) → ι . ∀ x5 : ι → ι → ι . ∀ x6 x7 . x2 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . Inj0 (Inj0 0)) 0 (λ x9 : (ι → ι) → ι → ι . setsum (x1 (λ x10 . λ x11 : ι → ι → ι . Inj0 x10) (λ x10 . x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . x9 (λ x12 . 0) 0))) (x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (setsum (setsum 0 0)) (λ x10 . x9 (λ x11 . x9 (λ x12 . 0) 0) (x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι → ι → ι . λ x13 : ι → ι . 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . 0))) (setsum (setsum 0 0) (x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0))) (λ x10 . x2 (λ x11 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) 0 (λ x11 : (ι → ι) → ι → ι . x3 (λ x12 : (ι → ι) → ι . λ x13 : ((ι → ι) → ι) → ι → ι → ι . λ x14 : ι → ι . 0) (λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x13 . 0))))) = x6) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : (ι → ι) → ι . x2 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . setsum (x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . setsum 0 0) (λ x11 . x7 (λ x12 . 0)) (λ x11 . 0) 0 (λ x11 . 0)) (λ x10 . x1 (λ x11 . λ x12 : ι → ι → ι . x10) (λ x11 . 0)) (λ x10 . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι → ι → ι . λ x13 : ι → ι . setsum 0 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . 0)) 0 (λ x10 . setsum 0 (Inj1 0))) (setsum (setsum 0 (x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0))) (x6 0 (λ x10 : ι → ι . x9 (λ x11 : ι → ι → ι . λ x12 x13 . 0) (λ x11 x12 . 0) (λ x11 . 0))))) (setsum (setsum x5 (setsum 0 (x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι → ι → ι . λ x11 : ι → ι . 0) (λ x9 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x10 . 0)))) (x2 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . Inj0 x5) (setsum x5 (Inj0 0)) (λ x9 : (ι → ι) → ι → ι . x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . Inj1 0)))) (λ x9 : (ι → ι) → ι → ι . x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι → ι → ι . λ x13 : ι → ι . x10 (x13 0) (λ x14 : ι → ι . λ x15 . x0 (λ x16 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x16 . 0) (λ x16 . 0) 0 (λ x16 . 0))) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . x10 (Inj1 0) (λ x13 : ι → ι . λ x14 . 0))) (λ x10 . 0) (λ x10 . 0) (x2 (λ x10 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . x6 0 (λ x11 : ι → ι . x2 (λ x12 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) 0 (λ x12 : (ι → ι) → ι → ι . 0))) (Inj0 0) (λ x10 : (ι → ι) → ι → ι . x6 (x6 0 (λ x11 : ι → ι . 0)) (λ x11 : ι → ι . Inj0 0))) (λ x10 . x6 (x1 (λ x11 . λ x12 : ι → ι → ι . x2 (λ x13 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) 0 (λ x13 : (ι → ι) → ι → ι . 0)) (λ x11 . x10)) (λ x11 : ι → ι . 0))) = Inj0 (setsum 0 (x2 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . x2 (λ x10 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) (setsum 0 0) (λ x10 : (ι → ι) → ι → ι . x10 (λ x11 . 0) 0)) (setsum (x4 0 (λ x9 : ι → ι . λ x10 . 0)) (Inj0 0)) (λ x9 : (ι → ι) → ι → ι . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . Inj0 0))))) ⟶ (∀ x4 : (ι → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι → ι) → ι) → ι . x1 (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 . 0) = x7 (λ x9 : ι → ι → ι . Inj0 (x6 0))) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : (ι → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x7 : (ι → (ι → ι) → ι → ι) → ι . x1 (λ x9 . λ x10 : ι → ι → ι . x7 (λ x11 . λ x12 : ι → ι . λ x13 . x11)) (λ x9 . Inj0 (setsum x9 (Inj0 (Inj1 0)))) = Inj0 0) ⟶ (∀ x4 : ι → ((ι → ι) → ι → ι) → ι → ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x0 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x9 . Inj1 (x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0))) (λ x9 . x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x11 . 0) (λ x11 . Inj0 (x0 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x12 . 0) (λ x12 . 0) 0 (λ x12 . 0))) 0 (λ x11 . setsum 0 (x0 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x12 . 0) (λ x12 . 0) 0 (λ x12 . 0)))) (λ x10 . Inj0 0) (λ x10 . Inj1 0) (Inj1 (x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0))) (λ x10 . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι → ι → ι . λ x13 : ι → ι . 0) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . x0 (λ x13 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x13 . Inj1 0) (λ x13 . 0) x9 (λ x13 . x1 (λ x14 . λ x15 : ι → ι → ι . 0) (λ x14 . 0))))) 0 (λ x9 . x2 (λ x10 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . x7 0) (x1 (λ x10 . λ x11 : ι → ι → ι . x0 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x12 . x1 (λ x13 . λ x14 : ι → ι → ι . 0) (λ x13 . 0)) (λ x12 . 0) (setsum 0 0) (λ x12 . Inj1 0)) (λ x10 . 0)) (λ x10 : (ι → ι) → ι → ι . x10 (λ x11 . setsum 0 0) (x2 (λ x11 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . x7 0) (Inj0 0) (λ x11 : (ι → ι) → ι → ι . 0)))) = x2 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . Inj1 (x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x10 0 (λ x11 : ι → ι . λ x12 . Inj1 0)) (λ x10 . Inj0 (x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . 0))) (λ x10 . 0) (x2 (λ x10 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) (x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0)) (λ x10 : (ι → ι) → ι → ι . 0)) (λ x10 . 0))) (setsum (Inj0 (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0)) (λ x9 . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0)) (λ x9 . x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x10 . 0) (λ x10 . 0) 0 (λ x10 . 0)) (Inj1 0) (λ x9 . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . 0)))) 0) (λ x9 : (ι → ι) → ι → ι . x6)) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι → ι . ∀ x5 : ((ι → ι → ι) → ι) → ι → ι → ι → ι . ∀ x6 : (ι → ι → ι) → ι . ∀ x7 . x0 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x11 . 0) (λ x11 . x11) (x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι → ι → ι . λ x13 : ι → ι . x2 (λ x14 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) 0 (λ x14 : (ι → ι) → ι → ι . 0)) (λ x11 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x12 . x10 0 (λ x13 : ι → ι . λ x14 . 0))) (λ x11 . x1 (λ x12 . λ x13 : ι → ι → ι . x10 0 (λ x14 : ι → ι . λ x15 . 0)) (λ x12 . x11))) (λ x10 . x0 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . x2 (λ x12 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . setsum 0 0) (x2 (λ x12 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) 0 (λ x12 : (ι → ι) → ι → ι . 0)) (λ x12 : (ι → ι) → ι → ι . setsum 0 0)) (λ x11 . 0) (λ x11 . x10) x7 (λ x11 . 0)) (λ x10 . setsum (Inj1 0) 0) (setsum x7 0) (λ x10 . x7)) (λ x9 . x1 (λ x10 . λ x11 : ι → ι → ι . setsum 0 0) (λ x10 . x10)) (λ x9 . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι → ι → ι . λ x12 : ι → ι . x1 (λ x13 . λ x14 : ι → ι → ι . x3 (λ x15 : (ι → ι) → ι . λ x16 : ((ι → ι) → ι) → ι → ι → ι . λ x17 : ι → ι . x1 (λ x18 . λ x19 : ι → ι → ι . 0) (λ x18 . 0)) (λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x16 . 0)) (λ x13 . 0)) (λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . λ x11 . setsum x11 (Inj1 0))) (Inj0 (setsum (x6 (λ x9 x10 . x6 (λ x11 x12 . 0))) 0)) (λ x9 . Inj0 0) = setsum (x5 (λ x9 : ι → ι → ι . x0 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . setsum (x10 0 (λ x11 : ι → ι . λ x12 . 0)) (x10 0 (λ x11 : ι → ι . λ x12 . 0))) (λ x10 . 0) (λ x10 . 0) (x1 (λ x10 . λ x11 : ι → ι → ι . x7) (λ x10 . x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . 0))) (λ x10 . x9 (Inj1 0) (x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . 0)))) 0 (Inj1 (setsum (x2 (λ x9 : ((ι → ι → ι) → ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . 0) 0 (λ x9 : (ι → ι) → ι → ι . 0)) (setsum 0 0))) (x0 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x9 . 0) (λ x9 . x9) x7 (λ x9 . 0))) 0) ⟶ False (proof)Theorem 143da.. : ∀ x0 : (ι → ((ι → ι) → ι → ι) → ι) → (((ι → ι → ι) → ι) → ι) → (((ι → ι) → ι) → ι) → ι → ι . ∀ x1 : (ι → (ι → ι) → ι) → ι → ι → ι . ∀ x2 : (ι → (((ι → ι) → ι → ι) → ι → ι → ι) → ι) → (ι → ι) → ι . ∀ x3 : ((ι → ι) → (((ι → ι) → ι) → ι) → ι) → ι → ι . (∀ x4 . ∀ x5 : (ι → ι) → ((ι → ι) → ι) → ι . ∀ x6 x7 . x3 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . x9 (x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . x12 (λ x13 . x3 (λ x14 : ι → ι . λ x15 : ((ι → ι) → ι) → ι . 0) 0) (x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x13 . 0))) (λ x11 : (ι → ι → ι) → ι . 0) (λ x11 : (ι → ι) → ι . 0) (setsum 0 0))) (setsum (x5 (λ x9 . Inj1 (setsum 0 0)) (λ x9 : ι → ι . 0)) x7) = x4) ⟶ (∀ x4 x5 . ∀ x6 : (ι → (ι → ι) → ι) → ι . ∀ x7 : ((ι → ι → ι) → ι) → (ι → ι) → ι . x3 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . Inj1 0) (setsum 0 (x6 (λ x9 . λ x10 : ι → ι . x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x13 . 0)) (λ x11 : (ι → ι → ι) → ι . x10 0) (λ x11 : (ι → ι) → ι . x0 (λ x12 . λ x13 : (ι → ι) → ι → ι . 0) (λ x12 : (ι → ι → ι) → ι . 0) (λ x12 : (ι → ι) → ι . 0) 0) 0))) = setsum 0 (Inj1 x5)) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι → ι) → ι . ∀ x6 . ∀ x7 : (((ι → ι) → ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x9 . setsum (x5 (λ x10 x11 x12 . setsum x11 x9)) x9) = setsum 0 (x7 (λ x9 : (ι → ι) → ι → ι . λ x10 . x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . x10) (λ x11 . x0 (λ x12 . λ x13 : (ι → ι) → ι → ι . Inj1 0) (λ x12 : (ι → ι → ι) → ι . x11) (λ x12 : (ι → ι) → ι . x3 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι) → ι . 0) 0) 0)) (λ x9 : ι → ι . λ x10 . x7 (λ x11 : (ι → ι) → ι → ι . λ x12 . x0 (λ x13 . λ x14 : (ι → ι) → ι → ι . x11 (λ x15 . 0) 0) (λ x13 : (ι → ι → ι) → ι . Inj1 0) (λ x13 : (ι → ι) → ι . Inj1 0) (Inj0 0)) (λ x11 : ι → ι . λ x12 . Inj0 (x1 (λ x13 . λ x14 : ι → ι . 0) 0 0))))) ⟶ (∀ x4 : ι → ι → ι → ι → ι . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 : (ι → ι → ι) → ι → (ι → ι) → ι . ∀ x7 . x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . x1 (λ x11 . λ x12 : ι → ι . x11) (x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . x3 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι) → ι . x3 (λ x15 : ι → ι . λ x16 : ((ι → ι) → ι) → ι . 0) 0) (x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x13 . 0))) (λ x11 : (ι → ι → ι) → ι . x11 (λ x12 x13 . setsum 0 0)) (λ x11 : (ι → ι) → ι . 0) (Inj1 (Inj1 0))) (x10 (λ x11 : ι → ι . λ x12 . 0) (setsum x7 0) x9)) (λ x9 . 0) = x1 (λ x9 . λ x10 : ι → ι . Inj1 (Inj1 (Inj1 (Inj0 0)))) (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x9 . 0)) (x3 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . Inj1 0) (λ x11 : (ι → ι → ι) → ι . 0) (λ x11 : (ι → ι) → ι . x9 (Inj0 0)) 0) 0)) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 . λ x10 : ι → ι . x1 (λ x11 . λ x12 : ι → ι . x11) (x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . 0) (λ x11 : (ι → ι → ι) → ι . Inj0 0) (λ x11 : (ι → ι) → ι . x10 (Inj1 0)) (x1 (λ x11 . λ x12 : ι → ι . 0) (setsum 0 0) (x10 0))) (setsum (x1 (λ x11 . λ x12 : ι → ι . Inj1 0) (setsum 0 0) (setsum 0 0)) (x10 0))) 0 (Inj0 x4) = x1 (λ x9 . λ x10 : ι → ι . x3 (λ x11 : ι → ι . λ x12 : ((ι → ι) → ι) → ι . setsum (Inj1 0) 0) (x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι → ι → ι . x13) (λ x13 . Inj1 0)) (λ x11 . x3 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι) → ι . 0) (x3 (λ x12 : ι → ι . λ x13 : ((ι → ι) → ι) → ι . 0) 0)))) (setsum (x3 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . 0) (setsum 0 x4)) (x1 (λ x9 . λ x10 : ι → ι . x3 (λ x11 : ι → ι . λ x12 : ((ι → ι) → ι) → ι . x1 (λ x13 . λ x14 : ι → ι . 0) 0 0) 0) (x3 (λ x9 : ι → ι . λ x10 : ((ι → ι) → ι) → ι . x6 0) x5) 0)) (setsum (setsum 0 0) (Inj0 (x6 0)))) ⟶ (∀ x4 . ∀ x5 x6 : ι → ι . ∀ x7 . x1 (λ x9 . λ x10 : ι → ι . 0) x7 (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι → ι → ι . x10 (λ x11 : ι → ι . λ x12 . 0) (Inj0 0) 0) (λ x9 . x1 (λ x10 . λ x11 : ι → ι . x7) 0 (x3 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι) → ι . Inj0 0) 0))) = x7) ⟶ (∀ x4 : (((ι → ι) → ι) → ι) → ι . ∀ x5 x6 x7 . x0 (λ x9 . λ x10 : (ι → ι) → ι → ι . x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . 0) (λ x11 : (ι → ι → ι) → ι . x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . x2 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x14 . 0)) (λ x12 . x1 (λ x13 . λ x14 : ι → ι . 0) (x11 (λ x13 x14 . 0)) 0)) (λ x11 : (ι → ι) → ι . x1 (λ x12 . λ x13 : ι → ι . x11 (λ x14 . Inj1 0)) (setsum (setsum 0 0) (x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x12 . 0))) (Inj0 (x10 (λ x12 . 0) 0))) (setsum (setsum x9 0) 0)) (λ x9 : (ι → ι → ι) → ι . Inj1 0) (λ x9 : (ι → ι) → ι . 0) 0 = x0 (λ x9 . λ x10 : (ι → ι) → ι → ι . setsum (x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . Inj0 0) (λ x11 : (ι → ι → ι) → ι . 0) (λ x11 : (ι → ι) → ι . x11 (λ x12 . x1 (λ x13 . λ x14 : ι → ι . 0) 0 0)) (Inj1 x6)) (x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . x12 (λ x13 . 0) (Inj1 0)) (λ x11 : (ι → ι → ι) → ι . x11 (λ x12 x13 . Inj0 0)) (λ x11 : (ι → ι) → ι . x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . x1 (λ x14 . λ x15 : ι → ι . 0) 0 0) (λ x12 . setsum 0 0)) (Inj1 (x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι → ι → ι . 0) (λ x11 . 0))))) (λ x9 : (ι → ι → ι) → ι . setsum (x3 (λ x10 : ι → ι . λ x11 : ((ι → ι) → ι) → ι . 0) (Inj0 0)) (setsum x5 (setsum x5 x7))) (λ x9 : (ι → ι) → ι . Inj0 0) x5) ⟶ (∀ x4 x5 x6 x7 . x0 (λ x9 . λ x10 : (ι → ι) → ι → ι . x1 (λ x11 . λ x12 : ι → ι . 0) 0 (x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . setsum (x0 (λ x13 . λ x14 : (ι → ι) → ι → ι . 0) (λ x13 : (ι → ι → ι) → ι . 0) (λ x13 : (ι → ι) → ι . 0) 0) (x1 (λ x13 . λ x14 : ι → ι . 0) 0 0)) (λ x11 : (ι → ι → ι) → ι . x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . x10 (λ x14 . 0) 0) (λ x12 . setsum 0 0)) (λ x11 : (ι → ι) → ι . x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι → ι → ι . x11 (λ x14 . 0)) (λ x12 . setsum 0 0)) x7)) (λ x9 : (ι → ι → ι) → ι . x6) (λ x9 : (ι → ι) → ι . x6) 0 = Inj1 (x0 (λ x9 . λ x10 : (ι → ι) → ι → ι . setsum 0 (x0 (λ x11 . λ x12 : (ι → ι) → ι → ι . x3 (λ x13 : ι → ι . λ x14 : ((ι → ι) → ι) → ι . 0) 0) (λ x11 : (ι → ι → ι) → ι . x10 (λ x12 . 0) 0) (λ x11 : (ι → ι) → ι . setsum 0 0) x6)) (λ x9 : (ι → ι → ι) → ι . x9 (λ x10 x11 . x9 (λ x12 x13 . x10))) (λ x9 : (ι → ι) → ι . Inj0 (Inj1 (setsum 0 0))) 0)) ⟶ False (proof)Theorem 6cf9b.. : ∀ x0 : (ι → ι) → (ι → ι) → ι → (ι → ι) → ι . ∀ x1 : (ι → ι → ((ι → ι) → ι) → ι) → ι → ι . ∀ x2 : (ι → ι) → (ι → (ι → ι → ι) → ι) → (ι → ι) → ι . ∀ x3 : (((ι → ι → ι) → ι) → ι → ((ι → ι) → ι) → ι) → ι → ι . (∀ x4 x5 x6 . ∀ x7 : ι → ((ι → ι) → ι → ι) → ι . x3 (λ x9 : (ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι . 0) 0 = x7 (x1 (λ x9 x10 . λ x11 : (ι → ι) → ι . x3 (λ x12 : (ι → ι → ι) → ι . λ x13 . λ x14 : (ι → ι) → ι . 0) x10) (x7 (x1 (λ x9 x10 . λ x11 : (ι → ι) → ι . x0 (λ x12 . 0) (λ x12 . 0) 0 (λ x12 . 0)) x4) (λ x9 : ι → ι . λ x10 . Inj0 (Inj0 0)))) (λ x9 : ι → ι . λ x10 . 0)) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x6 . ∀ x7 : ι → (ι → ι → ι) → ι . x3 (λ x9 : (ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι . x9 (λ x12 x13 . 0)) 0 = x6) ⟶ (∀ x4 x5 x6 . ∀ x7 : ι → ι . x2 (λ x9 . setsum 0 x5) (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 . x5) = setsum (setsum (Inj0 (x2 (λ x9 . Inj0 0) (λ x9 . λ x10 : ι → ι → ι . Inj0 0) (λ x9 . 0))) (setsum 0 (x3 (λ x9 : (ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι . setsum 0 0) x5))) (x0 (λ x9 . x9) (λ x9 . x1 (λ x10 x11 . λ x12 : (ι → ι) → ι . x0 (λ x13 . x13) (λ x13 . x1 (λ x14 x15 . λ x16 : (ι → ι) → ι . 0) 0) x10 (λ x13 . 0)) (Inj0 0)) (x3 (λ x9 : (ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι . 0) 0) (λ x9 . 0))) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 x7 . x2 (λ x9 . x1 (λ x10 x11 . λ x12 : (ι → ι) → ι . x3 (λ x13 : (ι → ι → ι) → ι . λ x14 . λ x15 : (ι → ι) → ι . setsum (Inj0 0) (Inj0 0)) x9) (x1 (λ x10 x11 . λ x12 : (ι → ι) → ι . Inj0 (Inj1 0)) x5)) (λ x9 . λ x10 : ι → ι → ι . x3 (λ x11 : (ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι) → ι . setsum x12 (setsum 0 (setsum 0 0))) 0) (λ x9 . 0) = x3 (λ x9 : (ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι . setsum 0 (setsum 0 0)) (setsum 0 0)) ⟶ (∀ x4 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι . ∀ x5 x6 x7 . x1 (λ x9 x10 . λ x11 : (ι → ι) → ι . setsum 0 (Inj1 0)) (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 x11 . x0 (λ x12 . x0 (λ x13 . Inj1 0) (λ x13 . 0) x10 (λ x13 . x2 (λ x14 . 0) (λ x14 . λ x15 : ι → ι → ι . 0) (λ x14 . 0))) (λ x12 . x0 (λ x13 . 0) (λ x13 . 0) (setsum 0 0) (λ x13 . 0)) x7 (λ x12 . x1 (λ x13 x14 . λ x15 : (ι → ι) → ι . x13) (Inj0 0)))) = setsum (setsum (x3 (λ x9 : (ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι) → ι . x2 (λ x12 . 0) (λ x12 . λ x13 : ι → ι → ι . Inj0 0) (λ x12 . x0 (λ x13 . 0) (λ x13 . 0) 0 (λ x13 . 0))) (setsum (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 x11 . 0)) (x2 (λ x9 . 0) (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 . 0)))) (x2 (λ x9 . 0) (λ x9 . λ x10 : ι → ι → ι . x0 (λ x11 . setsum 0 0) (λ x11 . 0) (x10 0 0) (λ x11 . 0)) (λ x9 . 0))) 0) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι → ι) → ι → ι → ι) → ι . x1 (λ x9 x10 . λ x11 : (ι → ι) → ι . x0 (λ x12 . x2 (λ x13 . x13) (λ x13 . λ x14 : ι → ι → ι . x2 (λ x15 . x1 (λ x16 x17 . λ x18 : (ι → ι) → ι . 0) 0) (λ x15 . λ x16 : ι → ι → ι . x16 0 0) (λ x15 . Inj1 0)) (λ x13 . setsum (x1 (λ x14 x15 . λ x16 : (ι → ι) → ι . 0) 0) (x2 (λ x14 . 0) (λ x14 . λ x15 : ι → ι → ι . 0) (λ x14 . 0)))) (λ x12 . x2 (λ x13 . Inj0 (x1 (λ x14 x15 . λ x16 : (ι → ι) → ι . 0) 0)) (λ x13 . λ x14 : ι → ι → ι . x3 (λ x15 : (ι → ι → ι) → ι . λ x16 . λ x17 : (ι → ι) → ι . x2 (λ x18 . 0) (λ x18 . λ x19 : ι → ι → ι . 0) (λ x18 . 0)) 0) (λ x13 . x10)) 0 (λ x12 . x1 (λ x13 x14 . λ x15 : (ι → ι) → ι . x2 (λ x16 . 0) (λ x16 . λ x17 : ι → ι → ι . setsum 0 0) (λ x16 . x16)) (setsum x10 (x3 (λ x13 : (ι → ι → ι) → ι . λ x14 . λ x15 : (ι → ι) → ι . 0) 0)))) 0 = x0 (λ x9 . x6 (x1 (λ x10 x11 . λ x12 : (ι → ι) → ι . x10) (x7 (λ x10 : ι → ι → ι . λ x11 x12 . x9)))) (λ x9 . x1 (λ x10 x11 . λ x12 : (ι → ι) → ι . x9) x5) x5 (λ x9 . x2 (λ x10 . x7 (λ x11 : ι → ι → ι . λ x12 x13 . Inj0 0)) (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . x3 (λ x11 : (ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι) → ι . 0) 0))) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι → ι) → ι → (ι → ι) → ι . ∀ x6 : ((ι → ι → ι) → (ι → ι) → ι) → ι . ∀ x7 . x0 (λ x9 . x5 (λ x10 x11 x12 . Inj1 (x0 (λ x13 . x1 (λ x14 x15 . λ x16 : (ι → ι) → ι . 0) 0) (λ x13 . x1 (λ x14 x15 . λ x16 : (ι → ι) → ι . 0) 0) (x2 (λ x13 . 0) (λ x13 . λ x14 : ι → ι → ι . 0) (λ x13 . 0)) (λ x13 . 0))) (Inj1 0) Inj0) (λ x9 . x9) (x2 (λ x9 . x7) (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 . x1 (λ x10 x11 . λ x12 : (ι → ι) → ι . x9) 0)) (λ x9 . 0) = setsum (x5 (λ x9 x10 x11 . Inj1 0) (x6 (λ x9 : ι → ι → ι . λ x10 : ι → ι . 0)) (λ x9 . x6 (λ x10 : ι → ι → ι . λ x11 : ι → ι . Inj1 (setsum 0 0)))) x4) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι) → ι . ∀ x6 : (ι → ι) → ι → ι . ∀ x7 . x0 (λ x9 . x9) (λ x9 . x9) (setsum x7 0) (λ x9 . x9) = x4) ⟶ False (proof)Theorem 78a98.. : ∀ x0 : (ι → (ι → (ι → ι) → ι) → ι) → (ι → ι) → ι . ∀ x1 : (ι → ι) → (ι → ι → ι → ι) → ι → ι → ι . ∀ x2 : (ι → ι) → ι → ((ι → ι → ι) → (ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x3 : (ι → ι) → (ι → ((ι → ι) → ι) → ι) → ι . (∀ x4 : (ι → (ι → ι) → ι → ι) → ι → (ι → ι) → ι → ι . ∀ x5 x6 x7 . x3 (λ x9 . Inj0 (Inj0 (x1 (λ x10 . setsum 0 0) (λ x10 x11 x12 . Inj1 0) x7 0))) (λ x9 . λ x10 : (ι → ι) → ι . 0) = x4 (λ x9 . λ x10 : ι → ι . λ x11 . x11) x7 (λ x9 . x2 (λ x10 . x3 (λ x11 . 0) (λ x11 . λ x12 : (ι → ι) → ι . 0)) (x2 (λ x10 . x6) x7 (λ x10 : ι → ι → ι . λ x11 : ι → ι . λ x12 . x12) (λ x10 . 0)) (λ x10 : ι → ι → ι . λ x11 : ι → ι . λ x12 . x0 (λ x13 . λ x14 : ι → (ι → ι) → ι . setsum x12 x13) (λ x13 . setsum (Inj0 0) (x1 (λ x14 . 0) (λ x14 x15 x16 . 0) 0 0))) (λ x10 . x2 (λ x11 . x0 (λ x12 . λ x13 : ι → (ι → ι) → ι . 0) (λ x12 . x3 (λ x13 . 0) (λ x13 . λ x14 : (ι → ι) → ι . 0))) x7 (λ x11 : ι → ι → ι . λ x12 : ι → ι . λ x13 . x2 (λ x14 . x12 0) (x11 0 0) (λ x14 : ι → ι → ι . λ x15 : ι → ι . λ x16 . x1 (λ x17 . 0) (λ x17 x18 x19 . 0) 0 0) (λ x14 . 0)) (λ x11 . x11))) 0) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 . x5) (λ x9 . λ x10 : (ι → ι) → ι . 0) = x5) ⟶ (∀ x4 : ((ι → ι → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι . ∀ x5 : (ι → ι) → (ι → ι) → ι . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι . ∀ x7 : ι → ι . x2 (λ x9 . x7 (x7 (Inj1 (setsum 0 0)))) 0 (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . x11) (λ x9 . x1 (λ x10 . 0) (λ x10 x11 x12 . Inj0 (setsum (x0 (λ x13 . λ x14 : ι → (ι → ι) → ι . 0) (λ x13 . 0)) 0)) (setsum (Inj0 (x3 (λ x10 . 0) (λ x10 . λ x11 : (ι → ι) → ι . 0))) x9) (Inj1 (x3 (λ x10 . 0) (λ x10 . λ x11 : (ι → ι) → ι . 0)))) = x1 (λ x9 . x7 0) (λ x9 x10 x11 . x7 0) (Inj0 (x2 (λ x9 . setsum 0 (Inj1 0)) (setsum (setsum 0 0) (Inj0 0)) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . x3 (λ x12 . x12) (λ x12 . λ x13 : (ι → ι) → ι . Inj0 0)) (λ x9 . x9))) (setsum (x3 (λ x9 . 0) (λ x9 . λ x10 : (ι → ι) → ι . setsum (x6 (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . 0)) (setsum 0 0))) (setsum (Inj1 (x0 (λ x9 . λ x10 : ι → (ι → ι) → ι . 0) (λ x9 . 0))) 0))) ⟶ (∀ x4 : ((ι → ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 x7 . x2 (λ x9 . x6) 0 (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . x2 (λ x12 . x9 (Inj0 x12) x12) (x1 (λ x12 . 0) (λ x12 x13 x14 . Inj1 (x3 (λ x15 . 0) (λ x15 . λ x16 : (ι → ι) → ι . 0))) 0 (setsum 0 (setsum 0 0))) (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . 0) (x1 (λ x12 . Inj1 x11) (λ x12 x13 x14 . 0) (setsum 0 (x2 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . 0) (λ x12 . 0))))) (λ x9 . 0) = Inj1 0) ⟶ (∀ x4 x5 . ∀ x6 : (ι → (ι → ι) → ι) → ((ι → ι) → ι) → ι → ι → ι . ∀ x7 : ι → ι . x1 (λ x9 . 0) (λ x9 x10 x11 . 0) x5 0 = x5) ⟶ (∀ x4 : (ι → (ι → ι) → ι → ι) → ι → ι . ∀ x5 : ι → ((ι → ι) → ι) → ι . ∀ x6 : ι → (ι → ι) → (ι → ι) → ι . ∀ x7 : (ι → ι) → ι . x1 (λ x9 . setsum (x2 (λ x10 . 0) (x0 (λ x10 . λ x11 : ι → (ι → ι) → ι . setsum 0 0) (λ x10 . setsum 0 0)) (λ x10 : ι → ι → ι . λ x11 : ι → ι . λ x12 . x0 (λ x13 . λ x14 : ι → (ι → ι) → ι . setsum 0 0) (λ x13 . x11 0)) (λ x10 . Inj1 (x0 (λ x11 . λ x12 : ι → (ι → ι) → ι . 0) (λ x11 . 0)))) 0) (λ x9 x10 x11 . x7 (λ x12 . x11)) (x1 (λ x9 . x7 (λ x10 . 0)) (λ x9 x10 x11 . x10) (x0 (λ x9 . λ x10 : ι → (ι → ι) → ι . x3 (λ x11 . x9) (λ x11 . λ x12 : (ι → ι) → ι . setsum 0 0)) (λ x9 . x2 (λ x10 . 0) (x0 (λ x10 . λ x11 : ι → (ι → ι) → ι . 0) (λ x10 . 0)) (λ x10 : ι → ι → ι . λ x11 : ι → ι . λ x12 . Inj0 0) (λ x10 . Inj1 0))) (x4 (λ x9 . λ x10 : ι → ι . λ x11 . x10 (setsum 0 0)) (x5 0 (λ x9 : ι → ι . 0)))) (x2 (λ x9 . x7 (λ x10 . 0)) (x5 0 (λ x9 : ι → ι . 0)) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . Inj0 (x2 (λ x12 . setsum 0 0) 0 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . Inj0 0) (λ x12 . x12))) (λ x9 . setsum 0 0)) = Inj1 (x3 (λ x9 . Inj0 0) (λ x9 . λ x10 : (ι → ι) → ι . setsum (x7 (λ x11 . Inj1 0)) (x10 (λ x11 . x9))))) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x0 (λ x9 . λ x10 : ι → (ι → ι) → ι . x1 (λ x11 . x0 (λ x12 . λ x13 : ι → (ι → ι) → ι . setsum (Inj0 0) (x2 (λ x14 . 0) 0 (λ x14 : ι → ι → ι . λ x15 : ι → ι . λ x16 . 0) (λ x14 . 0))) (λ x12 . x10 (x1 (λ x13 . 0) (λ x13 x14 x15 . 0) 0 0) (λ x13 . 0))) (λ x11 x12 x13 . setsum (x0 (λ x14 . λ x15 : ι → (ι → ι) → ι . x14) (λ x14 . Inj0 0)) (x2 (λ x14 . Inj1 0) (setsum 0 0) (λ x14 : ι → ι → ι . λ x15 : ι → ι . λ x16 . x15 0) (λ x14 . 0))) x6 (x0 (λ x11 . λ x12 : ι → (ι → ι) → ι . 0) (λ x11 . Inj0 (x10 0 (λ x12 . 0))))) (λ x9 . setsum (x0 (λ x10 . λ x11 : ι → (ι → ι) → ι . 0) (λ x10 . 0)) 0) = setsum 0 0) ⟶ (∀ x4 . ∀ x5 : ((ι → ι) → ι → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι → ι . ∀ x6 x7 . x0 (λ x9 . λ x10 : ι → (ι → ι) → ι . x2 (λ x11 . x1 (λ x12 . x11) (λ x12 x13 x14 . 0) (Inj1 (setsum 0 0)) (Inj1 0)) (x10 x7 (λ x11 . 0)) (λ x11 : ι → ι → ι . λ x12 : ι → ι . λ x13 . x0 (λ x14 . λ x15 : ι → (ι → ι) → ι . 0) (λ x14 . 0)) (λ x11 . x0 (λ x12 . λ x13 : ι → (ι → ι) → ι . 0) (λ x12 . Inj1 0))) (λ x9 . 0) = x2 (λ x9 . x2 (λ x10 . x7) 0 (λ x10 : ι → ι → ι . λ x11 : ι → ι . x1 (λ x12 . Inj1 0) (λ x12 x13 x14 . setsum 0 (x3 (λ x15 . 0) (λ x15 . λ x16 : (ι → ι) → ι . 0))) (x10 (Inj0 0) (Inj0 0))) (λ x10 . setsum (x1 (λ x11 . 0) (λ x11 x12 x13 . x11) (x2 (λ x11 . 0) 0 (λ x11 : ι → ι → ι . λ x12 : ι → ι . λ x13 . 0) (λ x11 . 0)) 0) (x1 (λ x11 . 0) (λ x11 x12 x13 . x13) (setsum 0 0) x7))) (setsum (setsum (x2 (λ x9 . Inj0 0) (x2 (λ x9 . 0) 0 (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . 0) (λ x9 . 0)) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . setsum 0 0) (λ x9 . x3 (λ x10 . 0) (λ x10 . λ x11 : (ι → ι) → ι . 0))) (x3 (λ x9 . setsum 0 0) (λ x9 . λ x10 : (ι → ι) → ι . x1 (λ x11 . 0) (λ x11 x12 x13 . 0) 0 0))) 0) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . x11) (λ x9 . x1 (λ x10 . x1 (λ x11 . x1 (λ x12 . 0) (λ x12 x13 x14 . 0) (x2 (λ x12 . 0) 0 (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . 0) (λ x12 . 0)) 0) (λ x11 x12 x13 . 0) x7 (Inj1 (setsum 0 0))) (λ x10 x11 x12 . 0) x6 (setsum (x0 (λ x10 . λ x11 : ι → (ι → ι) → ι . Inj1 0) (λ x10 . 0)) 0))) ⟶ False (proof)Theorem e7ac4.. : ∀ x0 : (ι → ι) → (ι → ι → ι) → ι . ∀ x1 : (ι → ι) → (ι → ι → (ι → ι) → ι) → ι . ∀ x2 : (ι → ι) → ι → (ι → ι) → ι → (ι → ι) → ι . ∀ x3 : (((ι → ι) → ι) → ι) → ι → ι → ι . (∀ x4 : (((ι → ι) → ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι) → (ι → ι) → ι → ι) → ι → (ι → ι) → ι . x3 (λ x9 : (ι → ι) → ι . 0) (setsum 0 (setsum (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 . x2 (λ x11 . 0) 0 (λ x11 . 0) 0 (λ x11 . 0)) (λ x9 : ι → ι . λ x10 . x9 0) (λ x9 . Inj1 0) 0) (Inj0 (Inj1 0)))) (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 . x1 (λ x11 . setsum 0 0) (λ x11 x12 . λ x13 : ι → ι . x1 (λ x14 . x11) (λ x14 x15 . λ x16 : ι → ι . x15))) (λ x9 : ι → ι . λ x10 . x6) (λ x9 . 0) (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 . x1 (λ x11 . Inj0 0) (λ x11 x12 . λ x13 : ι → ι . x2 (λ x14 . 0) 0 (λ x14 . 0) 0 (λ x14 . 0))) (λ x9 : ι → ι . λ x10 . setsum 0 (setsum 0 0)) (λ x9 . 0) (Inj1 (setsum 0 0)))) = Inj0 x5) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 : (ι → ι) → ι . x0 (λ x10 . Inj1 0) (λ x10 x11 . x0 (λ x12 . x9 (λ x13 . x12)) (λ x12 x13 . x2 (λ x14 . 0) (Inj0 0) (λ x14 . 0) (setsum 0 0) (λ x14 . x12)))) (setsum (Inj0 (x0 (λ x9 . x2 (λ x10 . 0) 0 (λ x10 . 0) 0 (λ x10 . 0)) (λ x9 x10 . x7))) 0) (Inj1 0) = setsum (setsum x7 0) 0) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι → (ι → ι) → ι → ι . ∀ x7 . x2 (setsum 0) x4 (λ x9 . x2 (λ x10 . x10) (x2 (λ x10 . x2 (λ x11 . 0) 0 (λ x11 . 0) (x0 (λ x11 . 0) (λ x11 x12 . 0)) (λ x11 . Inj1 0)) x9 (λ x10 . x2 (λ x11 . x9) (x1 (λ x11 . 0) (λ x11 x12 . λ x13 : ι → ι . 0)) (λ x11 . x11) (x2 (λ x11 . 0) 0 (λ x11 . 0) 0 (λ x11 . 0)) (λ x11 . 0)) (x1 (λ x10 . x10) (λ x10 x11 . λ x12 : ι → ι . x2 (λ x13 . 0) 0 (λ x13 . 0) 0 (λ x13 . 0))) (λ x10 . x9)) (λ x10 . x9) (setsum (setsum (Inj1 0) (Inj1 0)) 0) (λ x10 . x3 (λ x11 : (ι → ι) → ι . x3 (λ x12 : (ι → ι) → ι . x1 (λ x13 . 0) (λ x13 x14 . λ x15 : ι → ι . 0)) (x1 (λ x12 . 0) (λ x12 x13 . λ x14 : ι → ι . 0)) (setsum 0 0)) x7 (x1 (λ x11 . x0 (λ x12 . 0) (λ x12 x13 . 0)) (λ x11 x12 . λ x13 : ι → ι . 0)))) x7 (λ x9 . x5) = setsum (Inj1 (x3 (λ x9 : (ι → ι) → ι . 0) (x1 (λ x9 . setsum 0 0) (λ x9 x10 . λ x11 : ι → ι . 0)) x7)) (setsum x4 (x0 (setsum (Inj0 0)) (λ x9 x10 . Inj0 (Inj1 0))))) ⟶ (∀ x4 . ∀ x5 : (ι → (ι → ι) → ι → ι) → ι → (ι → ι) → ι . ∀ x6 x7 . x2 (λ x9 . x6) (x2 (λ x9 . x0 (λ x10 . x6) (λ x10 x11 . 0)) (x3 (λ x9 : (ι → ι) → ι . 0) (x0 (λ x9 . 0) (λ x9 x10 . 0)) (Inj0 x6)) (λ x9 . Inj0 0) x6 (λ x9 . x3 (λ x10 : (ι → ι) → ι . x6) (x5 (λ x10 . λ x11 : ι → ι . λ x12 . x12) (Inj0 0) (λ x10 . x9)) (x5 (λ x10 . λ x11 : ι → ι . λ x12 . x1 (λ x13 . 0) (λ x13 x14 . λ x15 : ι → ι . 0)) (x0 (λ x10 . 0) (λ x10 x11 . 0)) (λ x10 . setsum 0 0)))) (λ x9 . setsum (setsum (setsum (x1 (λ x10 . 0) (λ x10 x11 . λ x12 : ι → ι . 0)) (x0 (λ x10 . 0) (λ x10 x11 . 0))) 0) (Inj0 (x3 (λ x10 : (ι → ι) → ι . x0 (λ x11 . 0) (λ x11 x12 . 0)) x9 x9))) 0 (λ x9 . x3 (λ x10 : (ι → ι) → ι . 0) x9 (x3 (λ x10 : (ι → ι) → ι . Inj0 (Inj1 0)) (Inj0 0) (x3 (λ x10 : (ι → ι) → ι . 0) (x5 (λ x10 . λ x11 : ι → ι . λ x12 . 0) 0 (λ x10 . 0)) 0))) = setsum (Inj0 (x3 (λ x9 : (ι → ι) → ι . x1 (λ x10 . Inj1 0) (λ x10 x11 . λ x12 : ι → ι . Inj0 0)) (setsum (x3 (λ x9 : (ι → ι) → ι . 0) 0 0) (x5 (λ x9 . λ x10 : ι → ι . λ x11 . 0) 0 (λ x9 . 0))) (x1 (λ x9 . 0) (λ x9 x10 . λ x11 : ι → ι . 0)))) x6) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 x7 . x1 (λ x9 . 0) (λ x9 x10 . λ x11 : ι → ι . x9) = x4 x7) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ((ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x7 : ((ι → ι) → ι → ι) → ι → ι → ι . x1 (λ x9 . x1 (λ x10 . x0 (λ x11 . x9) (λ x11 x12 . Inj1 0)) (λ x10 x11 . λ x12 : ι → ι . x11)) (λ x9 x10 . λ x11 : ι → ι . x11 (x11 (x0 (λ x12 . Inj1 0) (λ x12 x13 . x3 (λ x14 : (ι → ι) → ι . 0) 0 0)))) = setsum (setsum x5 (setsum (setsum (x4 0) (Inj1 0)) (x6 (λ x9 x10 : ι → ι . λ x11 . x10 0)))) 0) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι → ι) → ι . ∀ x7 : ι → ι → ι . x0 (λ x9 . 0) (λ x9 x10 . x1 (λ x11 . x3 (λ x12 : (ι → ι) → ι . x10) (x3 (λ x12 : (ι → ι) → ι . Inj0 0) (x3 (λ x12 : (ι → ι) → ι . 0) 0 0) 0) 0) (λ x11 x12 . λ x13 : ι → ι . x3 (λ x14 : (ι → ι) → ι . Inj0 0) x12 (x13 (x13 0)))) = x1 (λ x9 . x1 (λ x10 . x6 0 (λ x11 : ι → ι . λ x12 . 0)) (λ x10 x11 . λ x12 : ι → ι . Inj0 (setsum x11 0))) (λ x9 x10 . λ x11 : ι → ι . x3 (λ x12 : (ι → ι) → ι . Inj0 0) (x0 (λ x12 . x1 (λ x13 . 0) (λ x13 x14 . λ x15 : ι → ι . x3 (λ x16 : (ι → ι) → ι . 0) 0 0)) (λ x12 x13 . setsum (setsum 0 0) (Inj0 0))) (x1 Inj1 (λ x12 x13 . λ x14 : ι → ι . 0)))) ⟶ (∀ x4 : ((ι → ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x5 : ι → (ι → ι → ι) → ι . ∀ x6 x7 . x0 (λ x9 . Inj0 (setsum 0 x7)) (λ x9 x10 . x10) = x5 (x2 (λ x9 . setsum (x3 (λ x10 : (ι → ι) → ι . 0) (setsum 0 0) (Inj0 0)) x6) (setsum (x1 (λ x9 . x5 0 (λ x10 x11 . 0)) (λ x9 x10 . λ x11 : ι → ι . 0)) (x5 (setsum 0 0) (λ x9 x10 . x0 (λ x11 . 0) (λ x11 x12 . 0)))) (λ x9 . x5 0 (λ x10 x11 . 0)) (setsum (x4 (λ x9 : ι → ι → ι . 0) 0 (λ x9 . 0)) (x0 (λ x9 . x3 (λ x10 : (ι → ι) → ι . 0) 0 0) (λ x9 x10 . setsum 0 0))) (λ x9 . Inj1 0)) (λ x9 x10 . x3 (λ x11 : (ι → ι) → ι . 0) (x2 (λ x11 . x9) x10 (λ x11 . x7) (Inj0 (setsum 0 0)) (λ x11 . x7)) 0)) ⟶ False (proof)Theorem 89451.. : ∀ x0 : (((ι → ι → ι) → ι) → (((ι → ι) → ι) → (ι → ι) → ι → ι) → (ι → ι) → (ι → ι) → ι) → ι → ι . ∀ x1 : (ι → ι) → ι → ι . ∀ x2 : (((ι → ι) → ι) → ι) → ι → ι . ∀ x3 : (((((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι) → (ι → ι) → ι) → (ι → (ι → ι → ι) → ι) → ((ι → ι → ι) → ι) → (ι → ι → ι) → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x3 (λ x9 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x10 : ι → ι . x7 x6 (setsum (x10 x6) (x1 (λ x11 . x10 0) 0))) (λ x9 . λ x10 : ι → ι → ι . x0 (λ x11 : (ι → ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x13 x14 : ι → ι . setsum (x12 (λ x15 : ι → ι . Inj0 0) (λ x15 . 0) (Inj0 0)) (x13 0)) (x3 (λ x11 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x12 : ι → ι . x11 (λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . setsum 0 0) (x0 (λ x13 : (ι → ι → ι) → ι . λ x14 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x15 x16 : ι → ι . 0) 0) (λ x13 . x2 (λ x14 : (ι → ι) → ι . 0) 0) (x1 (λ x13 . 0) 0)) (λ x11 . λ x12 : ι → ι → ι . x12 (x10 0 0) 0) (λ x11 : ι → ι → ι . x7 (setsum 0 0) (x10 0 0)) (λ x11 x12 . 0))) (λ x9 : ι → ι → ι . x1 (λ x10 . 0) 0) (λ x9 x10 . setsum x10 x10) = x1 (λ x9 . setsum (x3 (λ x10 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x11 : ι → ι . x0 (λ x12 : (ι → ι → ι) → ι . λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x14 x15 : ι → ι . 0) (Inj1 0)) (λ x10 . λ x11 : ι → ι → ι . x7 0 (Inj1 0)) (λ x10 : ι → ι → ι . setsum (setsum 0 0) (Inj1 0)) (λ x10 x11 . x10)) (setsum (x0 (λ x10 : (ι → ι → ι) → ι . λ x11 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x12 x13 : ι → ι . setsum 0 0) 0) (Inj0 (x1 (λ x10 . 0) 0)))) x6) ⟶ (∀ x4 . ∀ x5 : ι → (ι → ι → ι) → ι . ∀ x6 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → (ι → ι) → ι → ι . ∀ x7 . x3 (λ x9 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x10 : ι → ι . Inj1 0) (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 : ι → ι → ι . x6 (λ x10 : (ι → ι) → ι . 0) (λ x10 . x2 (λ x11 : (ι → ι) → ι . setsum (x1 (λ x12 . 0) 0) 0)) (λ x10 . x10) 0) (λ x9 x10 . 0) = Inj0 (x1 (λ x9 . 0) (x3 (λ x9 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x10 : ι → ι . x1 (λ x11 . 0) (x2 (λ x11 : (ι → ι) → ι . 0) 0)) (λ x9 . λ x10 : ι → ι → ι . x9) (λ x9 : ι → ι → ι . setsum (Inj1 0) (x6 (λ x10 : (ι → ι) → ι . 0) (λ x10 x11 . 0) (λ x10 . 0) 0)) (λ x9 x10 . x7)))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ((ι → ι → ι) → ι → ι → ι) → ι → ι . ∀ x7 : (ι → ι) → ι . x2 (λ x9 : (ι → ι) → ι . x3 (λ x10 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x11 : ι → ι . x9 (λ x12 . setsum 0 (Inj1 0))) (λ x10 . λ x11 : ι → ι → ι . x9 (λ x12 . x0 (λ x13 : (ι → ι → ι) → ι . λ x14 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x15 x16 : ι → ι . Inj0 0) (x3 (λ x13 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x14 : ι → ι . 0) (λ x13 . λ x14 : ι → ι → ι . 0) (λ x13 : ι → ι → ι . 0) (λ x13 x14 . 0)))) (λ x10 : ι → ι → ι . x0 (λ x11 : (ι → ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x13 x14 : ι → ι . x2 (λ x15 : (ι → ι) → ι . setsum 0 0) (setsum 0 0)) 0) (λ x10 x11 . x7 (λ x12 . Inj0 0))) 0 = setsum 0 (x1 (λ x9 . 0) (Inj0 (setsum (Inj0 0) (x0 (λ x9 : (ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x11 x12 : ι → ι . 0) 0))))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x2 (λ x9 : (ι → ι) → ι . x1 (λ x10 . setsum 0 (x0 (λ x11 : (ι → ι → ι) → ι . λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x13 x14 : ι → ι . 0) 0)) 0) x5 = Inj1 (x6 x7)) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 : ι → ι → (ι → ι) → ι . x1 (λ x9 . x6 (x3 (λ x10 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x11 : ι → ι . 0) (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 : ι → ι → ι . x3 (λ x11 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x12 : ι → ι . setsum 0 0) (λ x11 . λ x12 : ι → ι → ι . x11) (λ x11 : ι → ι → ι . x10 0 0) (λ x11 x12 . x3 (λ x13 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x14 : ι → ι . 0) (λ x13 . λ x14 : ι → ι → ι . 0) (λ x13 : ι → ι → ι . 0) (λ x13 x14 . 0))) (λ x10 x11 . x9))) (Inj0 x5) = x6 (x1 (λ x9 . x5) (Inj0 x5))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι → ι . ∀ x7 . x1 (λ x9 . x9) (x4 x7) = setsum (Inj0 (x1 (λ x9 . setsum (x1 (λ x10 . 0) 0) (x1 (λ x10 . 0) 0)) 0)) 0) ⟶ (∀ x4 x5 x6 x7 . x0 (λ x9 : (ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x11 x12 : ι → ι . Inj0 (x9 (λ x13 x14 . 0))) 0 = x4) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι → ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι . x0 (λ x9 : (ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x11 x12 : ι → ι . x10 (λ x13 : ι → ι . x0 (λ x14 : (ι → ι → ι) → ι . λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x16 x17 : ι → ι . x3 (λ x18 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x19 : ι → ι . 0) (λ x18 . λ x19 : ι → ι → ι . 0) (λ x18 : ι → ι → ι . x0 (λ x19 : (ι → ι → ι) → ι . λ x20 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x21 x22 : ι → ι . 0) 0) (λ x18 x19 . 0)) (x11 (x0 (λ x14 : (ι → ι → ι) → ι . λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x16 x17 : ι → ι . 0) 0))) (λ x13 . setsum (x0 (λ x14 : (ι → ι → ι) → ι . λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x16 x17 : ι → ι . x16 0) x13) 0) (Inj1 (x11 0))) (setsum 0 0) = Inj0 (x3 (λ x9 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι → (ι → ι) → ι → ι . λ x10 : ι → ι . Inj1 (x1 (λ x11 . x7 0) (x1 (λ x11 . 0) 0))) (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 : ι → ι → ι . x6) (λ x9 x10 . 0))) ⟶ False (proof)Theorem d1baf.. : ∀ x0 : (ι → ι → ι) → ((ι → ι) → ι) → ι . ∀ x1 : (ι → ι → ι) → ((ι → (ι → ι) → ι) → ι) → ι . ∀ x2 : ((ι → ι) → ι) → (ι → (ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x3 : (ι → ι → ι → ι) → ι → (((ι → ι) → ι) → (ι → ι) → ι) → ι → ι → ι . (∀ x4 x5 x6 x7 . x3 (λ x9 x10 x11 . x1 (λ x12 x13 . Inj0 (Inj0 (x3 (λ x14 x15 x16 . 0) 0 (λ x14 : (ι → ι) → ι . λ x15 : ι → ι . 0) 0 0))) (λ x12 : ι → (ι → ι) → ι . x1 (λ x13 x14 . 0) (λ x13 : ι → (ι → ι) → ι . x13 (x0 (λ x14 x15 . 0) (λ x14 : ι → ι . 0)) (λ x14 . Inj0 0)))) x7 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . Inj1 (setsum (x0 (λ x11 x12 . 0) (λ x11 : ι → ι . x3 (λ x12 x13 x14 . 0) 0 (λ x12 : (ι → ι) → ι . λ x13 : ι → ι . 0) 0 0)) (x1 (λ x11 x12 . 0) (λ x11 : ι → (ι → ι) → ι . 0)))) (x1 (λ x9 x10 . x1 (λ x11 x12 . x9) (λ x11 : ι → (ι → ι) → ι . 0)) (λ x9 : ι → (ι → ι) → ι . 0)) x5 = x7) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 . ∀ x6 : ι → (ι → ι) → ι . ∀ x7 : ι → ι . x3 (λ x9 x10 x11 . x11) (x7 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x6 (x10 (Inj1 (setsum 0 0))) (λ x11 . x0 (λ x12 x13 . setsum (x10 0) x12) (λ x12 : ι → ι . Inj1 (Inj1 0)))) (x1 (λ x9 x10 . setsum (Inj1 x9) (x7 (Inj1 0))) (λ x9 : ι → (ι → ι) → ι . x0 (λ x10 x11 . x11) (λ x10 : ι → ι . setsum (setsum 0 0) (x3 (λ x11 x12 x13 . 0) 0 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . 0) 0 0)))) (x1 (λ x9 x10 . x3 (λ x11 x12 x13 . setsum (setsum 0 0) (Inj0 0)) x9 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . setsum (x1 (λ x13 x14 . 0) (λ x13 : ι → (ι → ι) → ι . 0)) 0) (x0 (λ x11 x12 . x0 (λ x13 x14 . 0) (λ x13 : ι → ι . 0)) (λ x11 : ι → ι . x11 0)) 0) (λ x9 : ι → (ι → ι) → ι . setsum (x6 0 (λ x10 . x7 0)) 0)) = x7 (Inj0 (setsum (x3 (λ x9 x10 x11 . x9) 0 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) (x6 0 (λ x9 . 0)) 0) (setsum (x2 (λ x9 : ι → ι . 0) (λ x9 . λ x10 x11 : ι → ι . λ x12 . 0)) (x6 0 (λ x9 . 0)))))) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι → ι) → ι) → ι . ∀ x6 : (ι → ι) → ι → ι → ι → ι . ∀ x7 : ι → ι . x2 (λ x9 : ι → ι . 0) (λ x9 . λ x10 x11 : ι → ι . λ x12 . x9) = x5 (λ x9 : (ι → ι) → ι → ι . 0)) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 : ι → ι . 0) (λ x9 . λ x10 x11 : ι → ι . x10) = Inj0 (setsum (Inj0 (setsum x7 0)) (x0 (λ x9 x10 . 0) (λ x9 : ι → ι . x6)))) ⟶ (∀ x4 . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 : ((ι → ι) → ι → ι) → ι . ∀ x7 : ι → ι . x1 (λ x9 x10 . 0) (λ x9 : ι → (ι → ι) → ι . 0) = Inj1 (x5 (λ x9 : ι → ι . setsum (setsum (x7 0) (setsum 0 0)) (x3 (λ x10 x11 x12 . Inj0 0) (setsum 0 0) (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . 0) 0 (x5 (λ x10 : ι → ι . 0)))))) ⟶ (∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → (ι → ι) → ι → ι . ∀ x7 : ι → ι . x1 (λ x9 x10 . 0) (λ x9 : ι → (ι → ι) → ι . Inj0 (x3 (λ x10 x11 x12 . x10) (x1 (λ x10 x11 . 0) (λ x10 : ι → (ι → ι) → ι . 0)) (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . x0 (λ x12 x13 . x0 (λ x14 x15 . 0) (λ x14 : ι → ι . 0)) (λ x12 : ι → ι . x11 0)) (setsum 0 (x2 (λ x10 : ι → ι . 0) (λ x10 . λ x11 x12 : ι → ι . λ x13 . 0))) (x7 (x5 0 0)))) = setsum 0 (x3 (λ x9 x10 x11 . 0) (x5 (x6 0 (x5 0 0) (λ x9 . x5 0 0) (setsum 0 0)) 0) (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . Inj0 (x0 (λ x11 x12 . 0) (λ x11 : ι → ι . 0))) (x7 (x0 (λ x9 x10 . 0) (λ x9 : ι → ι . 0))) (setsum 0 (setsum 0 0)))) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι → ι) → ι) → ι . ∀ x6 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . ∀ x7 . x0 (λ x9 x10 . x0 (λ x11 x12 . 0) (λ x11 : ι → ι . x11 x7)) (λ x9 : ι → ι . 0) = x0 (λ x9 x10 . setsum (setsum (x2 (λ x11 : ι → ι . Inj1 0) (λ x11 . λ x12 x13 : ι → ι . λ x14 . 0)) x7) (x2 (λ x11 : ι → ι . x10) (λ x11 . λ x12 x13 : ι → ι . Inj1))) (λ x9 : ι → ι . x7)) ⟶ (∀ x4 : ((ι → ι → ι) → ι → ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : (ι → ι) → ι → (ι → ι) → ι → ι . ∀ x7 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι . x0 (λ x9 x10 . x7 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . λ x13 . x10)) (λ x9 : ι → ι . x5 (setsum (x7 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0)) (x7 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . Inj1 0)))) = x5 (x1 (λ x9 x10 . setsum (setsum (x6 (λ x11 . 0) 0 (λ x11 . 0) 0) (x3 (λ x11 x12 x13 . 0) 0 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . 0) 0 0)) (x0 (λ x11 x12 . x12) (λ x11 : ι → ι . setsum 0 0))) (λ x9 : ι → (ι → ι) → ι . Inj1 (x1 (λ x10 x11 . 0) (λ x10 : ι → (ι → ι) → ι . setsum 0 0))))) ⟶ False (proof)Theorem 79718.. : ∀ x0 : (ι → ι) → (((ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι) → ι → ι → ι) → ι . ∀ x1 : (ι → ι) → ((ι → ι) → ι) → ι . ∀ x2 : (((ι → ι) → ι) → (ι → ι) → ((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . ∀ x3 : ((ι → ((ι → ι) → ι) → ι → ι → ι) → ι → ι) → (ι → ι) → ι → ι . (∀ x4 : ι → ι . ∀ x5 : ι → (ι → ι → ι) → (ι → ι) → ι . ∀ x6 . ∀ x7 : (((ι → ι) → ι) → (ι → ι) → ι) → ((ι → ι) → ι) → ι → ι → ι . x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x10 . 0) (λ x9 . 0) 0 = x6) ⟶ (∀ x4 x5 x6 x7 . x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x10 . Inj1 (x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x12 . x12) (λ x11 . x3 (λ x12 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x13 . Inj1 0) (λ x12 . x12) 0) 0)) (λ x9 . 0) 0 = setsum (x2 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x0 (λ x14 . 0) (λ x14 : (ι → ι) → (ι → ι) → ι → ι . λ x15 : (ι → ι) → ι . λ x16 x17 . 0)) x6) (Inj1 0)) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι) → ι . ∀ x6 x7 . x2 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . 0) (x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x10 . x9 0 (λ x11 : ι → ι . 0) x10 (x1 (λ x11 . x0 (λ x12 . 0) (λ x12 : (ι → ι) → (ι → ι) → ι → ι . λ x13 : (ι → ι) → ι . λ x14 x15 . 0)) (λ x11 : ι → ι . x10))) (λ x9 . x0 (λ x10 . x7) (λ x10 : (ι → ι) → (ι → ι) → ι → ι . λ x11 : (ι → ι) → ι . λ x12 x13 . Inj1 0)) x7) = setsum 0 (x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x10 . x7) (λ x9 . 0) x6)) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → (ι → ι) → ι) → ι . ∀ x6 : (ι → ι → ι) → ((ι → ι) → ι) → ι → ι . ∀ x7 . x2 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . 0) (Inj0 (x5 (λ x9 . λ x10 : ι → ι . 0))) = setsum (x5 (λ x9 . λ x10 : ι → ι . x10 (x10 (Inj1 0)))) (setsum (setsum (x2 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x0 (λ x14 . 0) (λ x14 : (ι → ι) → (ι → ι) → ι → ι . λ x15 : (ι → ι) → ι . λ x16 x17 . 0)) 0) 0) x7)) ⟶ (∀ x4 : (ι → (ι → ι) → ι) → ((ι → ι) → ι) → ι → ι → ι . ∀ x5 x6 x7 . x1 (λ x9 . 0) (λ x9 : ι → ι . x3 (λ x10 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x11 . x0 (λ x12 . x10 (Inj1 0) (λ x13 : ι → ι . 0) (Inj1 0) (setsum 0 0)) (λ x12 : (ι → ι) → (ι → ι) → ι → ι . λ x13 : (ι → ι) → ι . λ x14 x15 . Inj0 (x13 (λ x16 . 0)))) (λ x10 . setsum (Inj1 (x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x12 . 0) (λ x11 . 0) 0)) (setsum (x2 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . λ x13 : (ι → ι) → ι → ι . λ x14 x15 . 0) 0) (setsum 0 0))) 0) = setsum (x2 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . Inj1 (x0 (λ x14 . x2 (λ x15 : (ι → ι) → ι . λ x16 : ι → ι . λ x17 : (ι → ι) → ι → ι . λ x18 x19 . 0) 0) (λ x14 : (ι → ι) → (ι → ι) → ι → ι . λ x15 : (ι → ι) → ι . λ x16 x17 . x14 (λ x18 . 0) (λ x18 . 0) 0))) (x4 (λ x9 . λ x10 : ι → ι . x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x12 . x11 0 (λ x13 : ι → ι . 0) 0 0) (λ x11 . x7) (setsum 0 0)) (λ x9 : ι → ι . x5) (x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x10 . Inj1 0) (λ x9 . 0) (x0 (λ x9 . 0) (λ x9 : (ι → ι) → (ι → ι) → ι → ι . λ x10 : (ι → ι) → ι . λ x11 x12 . 0))) (setsum (x1 (λ x9 . 0) (λ x9 : ι → ι . 0)) x6))) (setsum (Inj0 (x4 (λ x9 . λ x10 : ι → ι . 0) (λ x9 : ι → ι . setsum 0 0) 0 (x3 (λ x9 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x10 . 0) (λ x9 . 0) 0))) (Inj1 0))) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι) → ι → ι . ∀ x6 : ((ι → ι) → ι) → ι . ∀ x7 . x1 (λ x9 . x0 (λ x10 . x1 (λ x11 . x10) (λ x11 : ι → ι . Inj0 0)) (λ x10 : (ι → ι) → (ι → ι) → ι → ι . λ x11 : (ι → ι) → ι . λ x12 x13 . 0)) (λ x9 : ι → ι . Inj0 (x6 (λ x10 : ι → ι . x3 (λ x11 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x12 . x0 (λ x13 . 0) (λ x13 : (ι → ι) → (ι → ι) → ι → ι . λ x14 : (ι → ι) → ι . λ x15 x16 . 0)) (λ x11 . x3 (λ x12 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x13 . 0) (λ x12 . 0) 0) (x6 (λ x11 : ι → ι . 0))))) = setsum (x0 (λ x9 . Inj0 (x6 (λ x10 : ι → ι . x7))) (λ x9 : (ι → ι) → (ι → ι) → ι → ι . λ x10 : (ι → ι) → ι . λ x11 x12 . 0)) 0) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → (ι → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x0 (λ x9 . 0) (λ x9 : (ι → ι) → (ι → ι) → ι → ι . λ x10 : (ι → ι) → ι . λ x11 x12 . x1 (λ x13 . setsum (x10 (λ x14 . x11)) (setsum x11 (Inj0 0))) (λ x13 : ι → ι . setsum (x1 (λ x14 . 0) (λ x14 : ι → ι . x2 (λ x15 : (ι → ι) → ι . λ x16 : ι → ι . λ x17 : (ι → ι) → ι → ι . λ x18 x19 . 0) 0)) (setsum (Inj1 0) (x3 (λ x14 : ι → ((ι → ι) → ι) → ι → ι → ι . λ x15 . 0) (λ x14 . 0) 0)))) = x1 (λ x9 . x6) (λ x9 : ι → ι . x5 (λ x10 : ι → ι → ι . λ x11 : ι → ι . setsum (x0 (λ x12 . x9 0) (λ x12 : (ι → ι) → (ι → ι) → ι → ι . λ x13 : (ι → ι) → ι . λ x14 x15 . Inj1 0)) (setsum 0 0)) (λ x10 : ι → ι . x7 (x9 (x7 0 0)) (x10 (x1 (λ x11 . 0) (λ x11 : ι → ι . 0)))))) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 . Inj1 (x5 (x0 (λ x10 . setsum 0 0) (λ x10 : (ι → ι) → (ι → ι) → ι → ι . λ x11 : (ι → ι) → ι . λ x12 x13 . 0)))) (λ x9 : (ι → ι) → (ι → ι) → ι → ι . λ x10 : (ι → ι) → ι . λ x11 x12 . 0) = setsum (setsum x7 0) (x0 (λ x9 . x2 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . x14) (x1 (λ x10 . x6) (λ x10 : ι → ι . 0))) (λ x9 : (ι → ι) → (ι → ι) → ι → ι . λ x10 : (ι → ι) → ι . λ x11 x12 . x0 (λ x13 . setsum 0 (x10 (λ x14 . 0))) (λ x13 : (ι → ι) → (ι → ι) → ι → ι . λ x14 : (ι → ι) → ι . λ x15 x16 . x2 (λ x17 : (ι → ι) → ι . λ x18 : ι → ι . λ x19 : (ι → ι) → ι → ι . λ x20 x21 . 0) 0)))) ⟶ False (proof)Theorem 7dbdd.. : ∀ x0 : ((((ι → ι) → ι) → (ι → ι → ι) → ι → ι) → ((ι → ι → ι) → (ι → ι) → ι → ι) → ι → ι → ι → ι) → ι → (ι → ι) → ι → ι . ∀ x1 : ((ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x2 : (ι → ι) → ι → ι . ∀ x3 : (ι → ι → ((ι → ι) → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . (∀ x4 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι . ∀ x5 x6 x7 . x3 (λ x9 x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . setsum (x0 (λ x13 : ((ι → ι) → ι) → (ι → ι → ι) → ι → ι . λ x14 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x15 x16 x17 . x2 (λ x18 . Inj0 0) (x3 (λ x18 x19 . λ x20 : (ι → ι) → ι → ι . λ x21 : ι → ι . 0) (λ x18 . 0))) (x2 (λ x13 . Inj1 0) (x11 (λ x13 . 0) 0)) (λ x13 . x3 (λ x14 x15 . λ x16 : (ι → ι) → ι → ι . λ x17 : ι → ι . x14) (λ x14 . 0)) (Inj0 (x3 (λ x13 x14 . λ x15 : (ι → ι) → ι → ι . λ x16 : ι → ι . 0) (λ x13 . 0)))) (x3 (λ x13 x14 . λ x15 : (ι → ι) → ι → ι . λ x16 : ι → ι . 0) (λ x13 . x11 (λ x14 . setsum 0 0) (Inj1 0)))) (λ x9 . 0) = Inj0 0) ⟶ (∀ x4 : (ι → ι → ι) → (ι → ι) → ι . ∀ x5 x6 x7 . x3 (λ x9 x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . x3 (λ x13 x14 . λ x15 : (ι → ι) → ι → ι . λ x16 : ι → ι . 0) (λ x13 . Inj0 x10)) (λ x9 . setsum x9 0) = x3 (λ x9 x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . x3 (λ x13 x14 . λ x15 : (ι → ι) → ι → ι . λ x16 : ι → ι . x15 (λ x17 . 0) x13) (λ x13 . x3 (λ x14 x15 . λ x16 : (ι → ι) → ι → ι . λ x17 : ι → ι . 0) (λ x14 . 0))) (λ x9 . x9)) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 x6 x7 . x2 (λ x9 . 0) 0 = x7) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : ι → (ι → ι) → ι → ι . x2 Inj0 (x7 0 (λ x9 . 0) 0) = Inj1 0) ⟶ (∀ x4 : (ι → ι) → ι → ι . ∀ x5 : ι → ι → ι . ∀ x6 : (ι → (ι → ι) → ι) → ι → ι . ∀ x7 . x1 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x10 . Inj0 (x3 (λ x11 x12 . λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . x14 (setsum 0 0)) (λ x11 . 0))) (λ x9 . setsum 0 (x1 (λ x10 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x11 . setsum 0 (x3 (λ x12 x13 . λ x14 : (ι → ι) → ι → ι . λ x15 : ι → ι . 0) (λ x12 . 0))) (λ x10 . 0))) = x5 (x5 x7 (setsum x7 (x5 (Inj0 0) (x2 (λ x9 . 0) 0)))) (x0 (λ x9 : ((ι → ι) → ι) → (ι → ι → ι) → ι → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x11 x12 x13 . x10 (λ x14 x15 . x15) (λ x14 . 0) (x3 (λ x14 x15 . λ x16 : (ι → ι) → ι → ι . λ x17 : ι → ι . 0) (λ x14 . x13))) 0 (λ x9 . 0) (x6 (λ x9 . λ x10 : ι → ι . setsum (x3 (λ x11 x12 . λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . 0) (λ x11 . 0)) 0) x7))) ⟶ (∀ x4 x5 . ∀ x6 : ι → (ι → ι → ι) → ι . ∀ x7 . x1 (λ x9 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x10 . x7) (λ x9 . 0) = x7) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → ι → ι) → ι → (ι → ι) → ι . ∀ x6 : (ι → ι) → ι . ∀ x7 . x0 (λ x9 : ((ι → ι) → ι) → (ι → ι → ι) → ι → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x11 x12 x13 . x12) (x4 (setsum 0 x7)) (λ x9 . x7) (setsum 0 (x4 (x4 (x0 (λ x9 : ((ι → ι) → ι) → (ι → ι → ι) → ι → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x11 x12 x13 . 0) 0 (λ x9 . 0) 0)))) = x4 (setsum 0 (x4 (x0 (λ x9 : ((ι → ι) → ι) → (ι → ι → ι) → ι → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x11 x12 x13 . 0) (setsum 0 0) (λ x9 . x2 (λ x10 . 0) 0) (x3 (λ x9 x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . 0) (λ x9 . 0)))))) ⟶ (∀ x4 : (ι → ι → ι) → (ι → ι → ι) → ι . ∀ x5 . ∀ x6 x7 : ι → ι . x0 (λ x9 : ((ι → ι) → ι) → (ι → ι → ι) → ι → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x11 x12 x13 . Inj1 (setsum (Inj0 (x2 (λ x14 . 0) 0)) (x2 (λ x14 . 0) (setsum 0 0)))) 0 (λ x9 . x7 (x3 (λ x10 x11 . λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . setsum (x3 (λ x14 x15 . λ x16 : (ι → ι) → ι → ι . λ x17 : ι → ι . 0) (λ x14 . 0)) (x13 0)) (λ x10 . x1 (λ x11 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x12 . Inj1 0) (λ x11 . 0)))) 0 = setsum (setsum 0 (x4 (λ x9 x10 . 0) (λ x9 x10 . setsum (Inj1 0) 0))) 0) ⟶ False (proof)Theorem c1f11.. : ∀ x0 : ((ι → ι → ι) → ι → ((ι → ι) → ι → ι) → ι → ι → ι) → ι → ι → (ι → ι) → ι . ∀ x1 : (((((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι) → ι) → ι → ι . ∀ x2 : (ι → ι) → ((ι → ι) → ι) → ι . ∀ x3 : ((((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι) → ((ι → ι → ι) → (ι → ι) → ι) → ι → ι → ι → ι) → ((ι → ι) → ι → ι → ι) → (((ι → ι) → ι → ι) → ι) → ι . (∀ x4 : ι → (ι → ι → ι) → (ι → ι) → ι . ∀ x5 . ∀ x6 : (ι → ι → ι → ι) → ι → (ι → ι) → ι . ∀ x7 : (((ι → ι) → ι) → ι) → ι . x3 (λ x9 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι . λ x11 x12 x13 . x10 (λ x14 x15 . 0) (λ x14 . setsum x13 x11)) (λ x9 : ι → ι . λ x10 x11 . x9 0) (λ x9 : (ι → ι) → ι → ι . x5) = x5) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι → ι) → ι . ∀ x6 . ∀ x7 : (((ι → ι) → ι) → ι → ι → ι) → ι . x3 (λ x9 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι . λ x11 x12 x13 . setsum (setsum (x2 (λ x14 . x2 (λ x15 . 0) (λ x15 : ι → ι . 0)) (λ x14 : ι → ι . x14 0)) (setsum (x0 (λ x14 : ι → ι → ι . λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 x18 . 0) 0 0 (λ x14 . 0)) (Inj1 0))) (x3 (λ x14 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x15 : (ι → ι → ι) → (ι → ι) → ι . λ x16 x17 x18 . setsum (Inj1 0) 0) (λ x14 : ι → ι . λ x15 x16 . setsum 0 0) (λ x14 : (ι → ι) → ι → ι . 0))) (λ x9 : ι → ι . λ x10 x11 . 0) (λ x9 : (ι → ι) → ι → ι . 0) = x6) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 . x3 (λ x10 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x11 : (ι → ι → ι) → (ι → ι) → ι . λ x12 x13 x14 . x1 (λ x15 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . x15 (λ x16 : (ι → ι) → ι . Inj1 0) 0 (λ x16 . x1 (λ x17 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) 0) 0) (x1 (λ x15 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . x3 (λ x16 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x17 : (ι → ι → ι) → (ι → ι) → ι . λ x18 x19 x20 . 0) (λ x16 : ι → ι . λ x17 x18 . 0) (λ x16 : (ι → ι) → ι → ι . 0)) x13)) (λ x10 : ι → ι . λ x11 x12 . x0 (λ x13 : ι → ι → ι . λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 x17 . x2 (λ x18 . x0 (λ x19 : ι → ι → ι . λ x20 . λ x21 : (ι → ι) → ι → ι . λ x22 x23 . 0) 0 0 (λ x19 . 0)) (λ x18 : ι → ι . 0)) 0 0 (λ x13 . x3 (λ x14 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x15 : (ι → ι → ι) → (ι → ι) → ι . λ x16 x17 x18 . x16) (λ x14 : ι → ι . λ x15 x16 . setsum 0 0) (λ x14 : (ι → ι) → ι → ι . x0 (λ x15 : ι → ι → ι . λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 x19 . 0) 0 0 (λ x15 . 0)))) (λ x10 : (ι → ι) → ι → ι . Inj0 (setsum 0 0))) (λ x9 : ι → ι . setsum (Inj1 (setsum (x1 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) 0) x5)) x5) = x3 (λ x9 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι . λ x11 x12 x13 . x0 (λ x14 : ι → ι → ι . λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 x18 . 0) (x0 (λ x14 : ι → ι → ι . λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 x18 . 0) 0 x13 (λ x14 . x11)) (x10 (λ x14 x15 . x14) (λ x14 . 0)) (λ x14 . setsum (Inj1 (setsum 0 0)) (x1 (λ x15 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) (x2 (λ x15 . 0) (λ x15 : ι → ι . 0))))) (λ x9 : ι → ι . λ x10 x11 . x7) (λ x9 : (ι → ι) → ι → ι . x0 (λ x10 : ι → ι → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . x0 (λ x15 : ι → ι → ι . λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 x19 . x0 (λ x20 : ι → ι → ι . λ x21 . λ x22 : (ι → ι) → ι → ι . λ x23 x24 . x24) (Inj0 0) (Inj0 0) (λ x20 . x19)) (x2 (λ x15 . Inj1 0) (λ x15 : ι → ι . x14)) 0 (λ x15 . x14)) (Inj0 (x2 (λ x10 . setsum 0 0) (λ x10 : ι → ι . 0))) (x3 (λ x10 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x11 : (ι → ι → ι) → (ι → ι) → ι . λ x12 x13 x14 . x1 (λ x15 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . Inj1 0) 0) (λ x10 : ι → ι . λ x11 x12 . x0 (λ x13 : ι → ι → ι . λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 x17 . 0) (Inj0 0) (setsum 0 0) (λ x13 . 0)) (λ x10 : (ι → ι) → ι → ι . x9 (λ x11 . x0 (λ x12 : ι → ι → ι . λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 x16 . 0) 0 0 (λ x12 . 0)) (x1 (λ x11 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) 0))) (λ x10 . setsum 0 (x2 (λ x11 . x10) (λ x11 : ι → ι . x7))))) ⟶ (∀ x4 : (((ι → ι) → ι) → ι → ι) → ι . ∀ x5 : (ι → ι) → ι → ι → ι . ∀ x6 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . ∀ x7 . x2 (λ x9 . x5 (λ x10 . x9) (x3 (λ x10 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x11 : (ι → ι → ι) → (ι → ι) → ι . λ x12 x13 x14 . x13) (λ x10 : ι → ι . λ x11 x12 . x2 (λ x13 . setsum 0 0) (λ x13 : ι → ι . 0)) (λ x10 : (ι → ι) → ι → ι . x2 (λ x11 . x1 (λ x12 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) 0) (λ x11 : ι → ι . 0))) 0) (λ x9 : ι → ι . x3 (λ x10 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x11 : (ι → ι → ι) → (ι → ι) → ι . λ x12 x13 x14 . x13) (λ x10 : ι → ι . λ x11 x12 . 0) (λ x10 : (ι → ι) → ι → ι . setsum (setsum (x6 (λ x11 : (ι → ι) → ι . 0) 0 (λ x11 . 0) 0) (x3 (λ x11 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x12 : (ι → ι → ι) → (ι → ι) → ι . λ x13 x14 x15 . 0) (λ x11 : ι → ι . λ x12 x13 . 0) (λ x11 : (ι → ι) → ι → ι . 0))) (x3 (λ x11 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x12 : (ι → ι → ι) → (ι → ι) → ι . λ x13 x14 x15 . x13) (λ x11 : ι → ι . λ x12 x13 . x12) (λ x11 : (ι → ι) → ι → ι . Inj1 0)))) = x3 (λ x9 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι . λ x11 x12 x13 . Inj0 0) (λ x9 : ι → ι . λ x10 x11 . setsum (x9 (x3 (λ x12 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x13 : (ι → ι → ι) → (ι → ι) → ι . λ x14 x15 x16 . x14) (λ x12 : ι → ι . λ x13 x14 . setsum 0 0) (λ x12 : (ι → ι) → ι → ι . 0))) (Inj1 (x9 0))) (λ x9 : (ι → ι) → ι → ι . setsum (Inj1 (x0 (λ x10 : ι → ι → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . x3 (λ x15 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x16 : (ι → ι → ι) → (ι → ι) → ι . λ x17 x18 x19 . 0) (λ x15 : ι → ι . λ x16 x17 . 0) (λ x15 : (ι → ι) → ι → ι . 0)) 0 0 (λ x10 . x3 (λ x11 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x12 : (ι → ι → ι) → (ι → ι) → ι . λ x13 x14 x15 . 0) (λ x11 : ι → ι . λ x12 x13 . 0) (λ x11 : (ι → ι) → ι → ι . 0)))) (setsum 0 (setsum (x5 (λ x10 . 0) 0 0) (x9 (λ x10 . 0) 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 : (ι → ι → ι) → (ι → ι) → (ι → ι) → ι → ι . x1 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . Inj0 (x3 (λ x10 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x11 : (ι → ι → ι) → (ι → ι) → ι . λ x12 x13 x14 . Inj0 0) (λ x10 : ι → ι . λ x11 x12 . x10 (x9 (λ x13 : (ι → ι) → ι . 0) 0 (λ x13 . 0) 0)) (λ x10 : (ι → ι) → ι → ι . x3 (λ x11 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x12 : (ι → ι → ι) → (ι → ι) → ι . λ x13 x14 x15 . x1 (λ x16 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) 0) (λ x11 : ι → ι . λ x12 x13 . x12) (λ x11 : (ι → ι) → ι → ι . 0)))) (x2 (λ x9 . 0) (λ x9 : ι → ι . x2 (λ x10 . x2 (λ x11 . setsum 0 0) (λ x11 : ι → ι . x7 (λ x12 x13 . 0) (λ x12 . 0) (λ x12 . 0) 0)) (λ x10 : ι → ι . Inj1 0))) = Inj0 (x0 (λ x9 : ι → ι → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x1 (λ x14 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . x13) (x1 (λ x14 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . x0 (λ x15 : ι → ι → ι . λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 x19 . 0) 0 0 (λ x15 . 0)) (Inj0 0))) 0 (Inj0 (x1 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . x7 (λ x10 x11 . 0) (λ x10 . 0) (λ x10 . 0) 0) (setsum 0 0))) (λ x9 . x2 (λ x10 . 0) (λ x10 : ι → ι . x0 (λ x11 : ι → ι → ι . λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 x15 . x14) 0 (x0 (λ x11 : ι → ι → ι . λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 x15 . 0) 0 0 (λ x11 . 0)) (λ x11 . x2 (λ x12 . 0) (λ x12 : ι → ι . 0)))))) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : (((ι → ι) → ι) → ι) → ι . x1 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . x2 (λ x10 . x10) (λ x10 : ι → ι . setsum (x2 (λ x11 . x9 (λ x12 : (ι → ι) → ι . 0) 0 (λ x12 . 0) 0) (λ x11 : ι → ι . x10 0)) (x9 (λ x11 : (ι → ι) → ι . 0) (setsum 0 0) (λ x11 . x3 (λ x12 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x13 : (ι → ι → ι) → (ι → ι) → ι . λ x14 x15 x16 . 0) (λ x12 : ι → ι . λ x13 x14 . 0) (λ x12 : (ι → ι) → ι → ι . 0)) (x7 (λ x11 : (ι → ι) → ι . 0))))) (x6 0) = x2 (λ x9 . x3 (λ x10 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x11 : (ι → ι → ι) → (ι → ι) → ι . λ x12 x13 . setsum 0) (λ x10 : ι → ι . λ x11 x12 . x1 (λ x13 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . x10 (x3 (λ x14 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x15 : (ι → ι → ι) → (ι → ι) → ι . λ x16 x17 x18 . 0) (λ x14 : ι → ι . λ x15 x16 . 0) (λ x14 : (ι → ι) → ι → ι . 0))) (x0 (λ x13 : ι → ι → ι . λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 x17 . setsum 0 0) (setsum 0 0) (Inj0 0) (λ x13 . x12))) (λ x10 : (ι → ι) → ι → ι . x7 (λ x11 : (ι → ι) → ι . x0 (λ x12 : ι → ι → ι . λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 x16 . 0) x9 0 (λ x12 . x2 (λ x13 . 0) (λ x13 : ι → ι . 0))))) (λ x9 : ι → ι . Inj1 (x2 Inj0 (λ x10 : ι → ι . 0)))) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 : ι → (ι → ι → ι) → ι . ∀ x6 . ∀ x7 : ι → (ι → ι → ι) → ι . x0 (λ x9 : ι → ι → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . x3 (λ x14 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x15 : (ι → ι → ι) → (ι → ι) → ι . λ x16 x17 x18 . x0 (λ x19 : ι → ι → ι . λ x20 . λ x21 : (ι → ι) → ι → ι . λ x22 x23 . x20) x16 (Inj0 (x3 (λ x19 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x20 : (ι → ι → ι) → (ι → ι) → ι . λ x21 x22 x23 . 0) (λ x19 : ι → ι . λ x20 x21 . 0) (λ x19 : (ι → ι) → ι → ι . 0))) (λ x19 . x16)) (λ x14 : ι → ι . λ x15 x16 . 0) (λ x14 : (ι → ι) → ι → ι . x3 (λ x15 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x16 : (ι → ι → ι) → (ι → ι) → ι . λ x17 x18 x19 . 0) (λ x15 : ι → ι . λ x16 x17 . x2 (λ x18 . x1 (λ x19 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) 0) (λ x18 : ι → ι . x18 0)) (λ x15 : (ι → ι) → ι → ι . Inj1 (x15 (λ x16 . 0) 0)))) (x5 0 (λ x9 x10 . x0 (λ x11 : ι → ι → ι . λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 x15 . x15) 0 0 (λ x11 . x7 x9 (λ x12 x13 . x0 (λ x14 : ι → ι → ι . λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 x18 . 0) 0 0 (λ x14 . 0))))) 0 (λ x9 . Inj1 (x0 (λ x10 : ι → ι → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . x14) (Inj1 (x3 (λ x10 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x11 : (ι → ι → ι) → (ι → ι) → ι . λ x12 x13 x14 . 0) (λ x10 : ι → ι . λ x11 x12 . 0) (λ x10 : (ι → ι) → ι → ι . 0))) (x5 x6 (λ x10 x11 . Inj0 0)) (λ x10 . x2 (λ x11 . x1 (λ x12 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) 0) (λ x11 : ι → ι . 0)))) = setsum 0 (setsum (x5 0 (λ x9 x10 . Inj0 (x7 0 (λ x11 x12 . 0)))) 0)) ⟶ (∀ x4 : (ι → ι → ι) → ι . ∀ x5 : ι → ι → ι . ∀ x6 : ι → (ι → ι) → ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → ι . x0 (λ x9 : ι → ι → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . setsum (x2 (λ x14 . x14) (λ x14 : ι → ι . x13)) (setsum (setsum 0 0) (x1 (λ x14 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . setsum 0 0) 0))) (x7 (x6 (x2 (λ x9 . x9) (λ x9 : ι → ι . 0)) (λ x9 . Inj0 (Inj0 0)) (x2 (λ x9 . x0 (λ x10 : ι → ι → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . 0) 0 0 (λ x10 . 0)) (λ x9 : ι → ι . x6 0 (λ x10 . 0) 0))) (λ x9 : ι → ι . Inj0 (Inj0 (x9 0)))) (x6 (x3 (λ x9 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x10 : (ι → ι → ι) → (ι → ι) → ι . λ x11 x12 x13 . 0) (λ x9 : ι → ι . λ x10 x11 . 0) (λ x9 : (ι → ι) → ι → ι . x9 (λ x10 . x2 (λ x11 . 0) (λ x11 : ι → ι . 0)) (setsum 0 0))) (λ x9 . Inj1 0) (x5 0 (x0 (λ x9 : ι → ι → ι . λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 x13 . 0) 0 0 (λ x9 . setsum 0 0)))) (λ x9 . x0 (λ x10 : ι → ι → ι . λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 x14 . x14) 0 (Inj0 (x6 (x5 0 0) (λ x10 . setsum 0 0) (x5 0 0))) (λ x10 . x1 (λ x11 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι → ι . 0) (x3 (λ x11 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x12 : (ι → ι → ι) → (ι → ι) → ι . λ x13 x14 x15 . x3 (λ x16 : ((ι → ι) → ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . λ x17 : (ι → ι → ι) → (ι → ι) → ι . λ x18 x19 x20 . 0) (λ x16 : ι → ι . λ x17 x18 . 0) (λ x16 : (ι → ι) → ι → ι . 0)) (λ x11 : ι → ι . λ x12 x13 . setsum 0 0) (λ x11 : (ι → ι) → ι → ι . x0 (λ x12 : ι → ι → ι . λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 x16 . 0) 0 0 (λ x12 . 0))))) = Inj0 (Inj1 (x4 (λ x9 x10 . x7 0 (λ x11 : ι → ι . 0))))) ⟶ False (proof)Theorem 2d68a.. : ∀ x0 : ((ι → ι) → ι) → ι → ι . ∀ x1 : (ι → ι) → ι → ι . ∀ x2 : (((((ι → ι) → ι) → ι) → ι → (ι → ι) → ι) → ι → ι → ι) → ι → (ι → ι → ι → ι) → ι . ∀ x3 : (ι → ι → ((ι → ι) → ι) → ι) → ι → ((ι → ι → ι) → ι) → ι → (ι → ι) → ι . (∀ x4 : (((ι → ι) → ι) → ι) → ((ι → ι) → ι → ι) → ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x7 . x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . x3 (λ x12 x13 . λ x14 : (ι → ι) → ι . 0) (Inj1 x10) (λ x12 : ι → ι → ι . Inj1 (setsum (x0 (λ x13 : ι → ι . 0) 0) (Inj1 0))) (Inj1 (x1 (λ x12 . 0) (x1 (λ x12 . 0) 0))) (λ x12 . x1 (setsum (Inj1 0)) (setsum (x1 (λ x13 . 0) 0) (setsum 0 0)))) (setsum (setsum 0 (setsum (x1 (λ x9 . 0) 0) (x1 (λ x9 . 0) 0))) (x1 (λ x9 . 0) (x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x10 x11 . x2 (λ x12 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x13 x14 . 0) 0 (λ x12 x13 x14 . 0)) (x1 (λ x9 . 0) 0) (λ x9 x10 x11 . Inj1 0)))) (λ x9 : ι → ι → ι . setsum (x0 (λ x10 : ι → ι . 0) (x1 (λ x10 . Inj1 0) (x1 (λ x10 . 0) 0))) 0) x7 (λ x9 . x1 (λ x10 . 0) (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . 0) (Inj1 (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . 0) 0 (λ x10 x11 x12 . 0))) (λ x10 x11 x12 . x3 (λ x13 x14 . λ x15 : (ι → ι) → ι . x12) x11 (λ x13 : ι → ι → ι . setsum 0 0) 0 (λ x13 . x11)))) = x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . Inj0 (setsum (x1 (λ x12 . 0) (Inj0 0)) (setsum (x11 (λ x12 . 0)) x9))) (x0 (λ x9 : ι → ι . x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . 0) 0 (λ x10 x11 x12 . 0)) 0) (λ x9 : ι → ι → ι . Inj0 (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . 0) (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . x1 (λ x13 . 0) 0) 0 (λ x10 x11 x12 . 0)) (λ x10 x11 x12 . x12))) (x4 (λ x9 : (ι → ι) → ι . x9 (λ x10 . x0 (λ x11 : ι → ι . Inj1 0) (x9 (λ x11 . 0)))) (λ x9 : ι → ι . λ x10 . Inj0 (x6 (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0))) (x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . x11 (λ x12 . 0)) (x6 (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . 0)) (λ x9 : ι → ι → ι . x0 (λ x10 : ι → ι . Inj0 0) (x3 (λ x10 x11 . λ x12 : (ι → ι) → ι . 0) 0 (λ x10 : ι → ι → ι . 0) 0 (λ x10 . 0))) 0 (λ x9 . x1 (λ x10 . x3 (λ x11 x12 . λ x13 : (ι → ι) → ι . 0) 0 (λ x11 : ι → ι → ι . 0) 0 (λ x11 . 0)) 0))) (λ x9 . Inj1 (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . Inj0 (x1 (λ x13 . 0) 0)) (Inj0 0) (λ x10 x11 x12 . x9)))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . 0) (x5 (x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x10 x11 . x2 (λ x12 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x13 x14 . x14) (x9 (λ x12 : (ι → ι) → ι . 0) 0 (λ x12 . 0)) (λ x12 x13 x14 . x13)) (Inj0 (setsum 0 0)) (λ x9 x10 x11 . 0))) (λ x9 : ι → ι → ι . 0) (x0 (λ x9 : ι → ι . Inj1 (Inj1 0)) (setsum (Inj1 0) 0)) (λ x9 . setsum x6 0) = Inj0 0) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x10 x11 . x0 (λ x12 : ι → ι . x0 (λ x13 : ι → ι . x3 (λ x14 x15 . λ x16 : (ι → ι) → ι . setsum 0 0) 0 (λ x14 : ι → ι → ι . 0) x11 (λ x14 . x1 (λ x15 . 0) 0)) 0) (x0 (λ x12 : ι → ι . x1 (λ x13 . x0 (λ x14 : ι → ι . 0) 0) 0) (setsum (x0 (λ x12 : ι → ι . 0) 0) (x0 (λ x12 : ι → ι . 0) 0)))) 0 (λ x9 x10 x11 . 0) = setsum 0 (x0 (λ x9 : ι → ι . Inj1 (Inj1 (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . 0) 0 (λ x10 x11 x12 . 0)))) (x0 (λ x9 : ι → ι . setsum (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . 0) 0 (λ x10 x11 x12 . 0)) 0) x7))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ((ι → ι) → ι → ι → ι) → ι → ι . ∀ x7 . x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x10 . setsum 0) (Inj0 (x0 (λ x9 : ι → ι . 0) (x0 (λ x9 : ι → ι . setsum 0 0) (x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . 0) 0 (λ x9 : ι → ι → ι . 0) 0 (λ x9 . 0))))) (λ x9 x10 x11 . 0) = x6 (λ x9 : ι → ι . λ x10 x11 . x11) (x0 (λ x9 : ι → ι . 0) x7)) ⟶ (∀ x4 : (ι → (ι → ι) → ι) → (ι → ι → ι) → ι . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 x7 . x1 (λ x9 . x5 (λ x10 : ι → ι → ι . x6)) 0 = x5 (λ x9 : ι → ι → ι . x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . x11) (setsum (x5 (λ x10 : ι → ι → ι . 0)) (Inj1 (Inj0 0))) (λ x10 x11 x12 . x0 (λ x13 : ι → ι . 0) x10))) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 . x3 (λ x10 x11 . λ x12 : (ι → ι) → ι . x9) x6 (λ x10 : ι → ι → ι . x6) (x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . x1 (λ x13 . 0) 0) x9 (λ x10 x11 x12 . setsum (Inj0 0) 0)) (λ x10 . x9)) (x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x10 x11 . Inj1 (x0 (λ x12 : ι → ι . x12 0) x11)) (x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . x2 (λ x12 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x13 x14 . 0) x9 (λ x12 x13 x14 . 0)) 0 (λ x9 : ι → ι → ι . x5) 0 (λ x9 . 0)) (λ x9 x10 x11 . x10)) = Inj1 (Inj0 (x1 (λ x9 . x3 (λ x10 x11 . λ x12 : (ι → ι) → ι . x3 (λ x13 x14 . λ x15 : (ι → ι) → ι . 0) 0 (λ x13 : ι → ι → ι . 0) 0 (λ x13 . 0)) (x3 (λ x10 x11 . λ x12 : (ι → ι) → ι . 0) 0 (λ x10 : ι → ι → ι . 0) 0 (λ x10 . 0)) (λ x10 : ι → ι → ι . 0) (Inj1 0) (λ x10 . setsum 0 0)) (setsum 0 x4)))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 : ι → ι . x7) x7 = setsum (Inj1 (x5 0)) (x1 (λ x9 . x9) (setsum (x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . 0) 0 (λ x9 : ι → ι → ι . x5 0) (Inj1 0) (λ x9 . x0 (λ x10 : ι → ι . 0) 0)) 0))) ⟶ (∀ x4 : ((ι → ι → ι) → (ι → ι) → ι) → ι . ∀ x5 : (((ι → ι) → ι → ι) → ι → ι → ι) → ι . ∀ x6 : ((ι → ι → ι) → ι) → ι → ι . ∀ x7 . x0 (λ x9 : ι → ι . x0 (λ x10 : ι → ι . x1 (λ x11 . setsum (x9 0) (x3 (λ x12 x13 . λ x14 : (ι → ι) → ι . 0) 0 (λ x12 : ι → ι → ι . 0) 0 (λ x12 . 0))) (x2 (λ x11 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x12 x13 . x1 (λ x14 . 0) 0) (Inj0 0) (λ x11 x12 x13 . setsum 0 0))) 0) (x1 (λ x9 . x3 (λ x10 x11 . λ x12 : (ι → ι) → ι . 0) (x5 (λ x10 : (ι → ι) → ι → ι . λ x11 x12 . x0 (λ x13 : ι → ι . 0) 0)) (λ x10 : ι → ι → ι . Inj1 (x3 (λ x11 x12 . λ x13 : (ι → ι) → ι . 0) 0 (λ x11 : ι → ι → ι . 0) 0 (λ x11 . 0))) 0 (setsum (Inj1 0))) (x3 (λ x9 x10 . λ x11 : (ι → ι) → ι . setsum 0 (Inj1 0)) (x2 (λ x9 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x10 x11 . x9 (λ x12 : (ι → ι) → ι . 0) 0 (λ x12 . 0)) 0 (λ x9 x10 x11 . 0)) (λ x9 : ι → ι → ι . x6 (λ x10 : ι → ι → ι . x2 (λ x11 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x12 x13 . 0) 0 (λ x11 x12 x13 . 0)) (x0 (λ x10 : ι → ι . 0) 0)) 0 (λ x9 . 0))) = x0 (λ x9 : ι → ι . x2 (λ x10 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x11 x12 . x2 (λ x13 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x14 x15 . 0) (setsum x11 (x0 (λ x13 : ι → ι . 0) 0)) (λ x13 x14 x15 . x14)) (x6 (λ x10 : ι → ι → ι . x3 (λ x11 x12 . λ x13 : (ι → ι) → ι . x12) (x1 (λ x11 . 0) 0) (λ x11 : ι → ι → ι . x2 (λ x12 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x13 x14 . 0) 0 (λ x12 x13 x14 . 0)) 0 (λ x11 . x2 (λ x12 : (((ι → ι) → ι) → ι) → ι → (ι → ι) → ι . λ x13 x14 . 0) 0 (λ x12 x13 x14 . 0))) (x0 (λ x10 : ι → ι . Inj0 0) (x1 (λ x10 . 0) 0))) (λ x10 x11 x12 . setsum (setsum x11 x12) (Inj0 0))) (x5 (λ x9 : (ι → ι) → ι → ι . λ x10 x11 . setsum 0 (setsum (setsum 0 0) (Inj0 0))))) ⟶ False (proof)Theorem 2e12a.. : ∀ x0 : ((ι → ι) → ι → ι) → (ι → ι → ι → ι) → ι → ι → (ι → ι) → ι → ι . ∀ x1 : ((ι → ((ι → ι) → ι → ι) → ι) → (ι → ι) → ι → ι) → ι → ι . ∀ x2 : (((((ι → ι) → ι → ι) → ι) → ι) → (ι → (ι → ι) → ι) → ι) → (ι → ι) → ι . ∀ x3 : ((ι → ((ι → ι) → ι → ι) → ι) → ι) → ((((ι → ι) → ι) → ι) → ι) → ι . (∀ x4 . ∀ x5 : (ι → ι) → (ι → ι) → ι → ι → ι . ∀ x6 . ∀ x7 : ι → (ι → ι) → ι . x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x5 (λ x10 . x9 (setsum 0 (setsum 0 0)) (λ x11 : ι → ι . λ x12 . x1 (λ x13 : ι → ((ι → ι) → ι → ι) → ι . λ x14 : ι → ι . λ x15 . Inj0 0) 0)) (λ x10 . x2 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 : ι → (ι → ι) → ι . 0) (λ x11 . 0)) (Inj0 0) 0) (λ x9 : ((ι → ι) → ι) → ι . Inj0 (Inj1 (x9 (λ x10 : ι → ι . x10 0)))) = x5 (λ x9 . x5 Inj1 (λ x10 . 0) (x2 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι . λ x11 : ι → (ι → ι) → ι . x0 (λ x12 : ι → ι . λ x13 . x0 (λ x14 : ι → ι . λ x15 . 0) (λ x14 x15 x16 . 0) 0 0 (λ x14 . 0) 0) (λ x12 x13 x14 . x2 (λ x15 : (((ι → ι) → ι → ι) → ι) → ι . λ x16 : ι → (ι → ι) → ι . 0) (λ x15 . 0)) 0 (x3 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x12 : ((ι → ι) → ι) → ι . 0)) (λ x12 . x12) 0) (λ x10 . x2 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 : ι → (ι → ι) → ι . 0) (λ x11 . x0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 x13 x14 . 0) 0 0 (λ x12 . 0) 0))) 0) (λ x9 . setsum (x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . x9) (x3 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . setsum 0 0) (λ x10 : ((ι → ι) → ι) → ι . x2 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 : ι → (ι → ι) → ι . 0) (λ x11 . 0)))) (x5 (λ x10 . x6) (λ x10 . 0) (setsum 0 0) (x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . Inj1 0) 0))) (Inj0 (setsum (setsum (x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x9 : ((ι → ι) → ι) → ι . 0)) 0) 0)) (Inj0 (x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . x2 (λ x13 : (((ι → ι) → ι → ι) → ι) → ι . λ x14 : ι → (ι → ι) → ι . 0) (λ x13 . 0)) (x5 (λ x10 . 0) (λ x10 . 0) 0 0)) (λ x9 : ((ι → ι) → ι) → ι . 0)))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι → (ι → ι) → ι → ι . ∀ x7 : ι → ι . x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x9 : ((ι → ι) → ι) → ι . x7 x5) = x7 (Inj0 (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . Inj0 (Inj0 0)) (Inj1 (Inj1 0))))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ((ι → ι) → ι → ι) → ι . ∀ x7 : ((ι → ι) → (ι → ι) → ι) → ι → ι . x2 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 : ι → (ι → ι) → ι . x3 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x11 : ((ι → ι) → ι) → ι . 0)) (λ x9 . 0) = x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . setsum 0 0) (λ x9 : ((ι → ι) → ι) → ι . Inj1 0)) ⟶ (∀ x4 x5 : (ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x2 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 : ι → (ι → ι) → ι . 0) (λ x9 . setsum 0 (x7 x6 (x2 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι . λ x11 : ι → (ι → ι) → ι . x0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 x13 x14 . 0) 0 0 (λ x12 . 0) 0) (λ x10 . x1 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . λ x12 : ι → ι . λ x13 . 0) 0)))) = x4 (λ x9 . 0)) ⟶ (∀ x4 x5 . ∀ x6 : (ι → (ι → ι) → ι) → ((ι → ι) → ι) → (ι → ι) → ι . ∀ x7 . x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . Inj1 (Inj1 (x0 (λ x12 : ι → ι . λ x13 . x3 (λ x14 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x14 : ((ι → ι) → ι) → ι . 0)) (λ x12 x13 x14 . 0) (x0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 x13 x14 . 0) 0 0 (λ x12 . 0) 0) (x0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 x13 x14 . 0) 0 0 (λ x12 . 0) 0) (λ x12 . 0) 0))) x4 = x4) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → (ι → ι) → ι . x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . 0) (x7 (Inj0 (x2 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 : ι → (ι → ι) → ι . 0) (λ x9 . 0))) (λ x9 . setsum (x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . Inj1 0) 0) (setsum x6 (x0 (λ x10 : ι → ι . λ x11 . 0) (λ x10 x11 x12 . 0) 0 0 (λ x10 . 0) 0)))) = x7 (Inj1 (Inj0 (x7 x4 (λ x9 . Inj1 0)))) (λ x9 . Inj1 0)) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : (ι → ι) → ((ι → ι) → ι) → ι → ι → ι . ∀ x7 : (((ι → ι) → ι → ι) → ι) → ι . x0 (λ x9 : ι → ι . λ x10 . 0) (λ x9 x10 x11 . Inj1 (x3 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . setsum (x0 (λ x13 : ι → ι . λ x14 . 0) (λ x13 x14 x15 . 0) 0 0 (λ x13 . 0) 0) (x0 (λ x13 : ι → ι . λ x14 . 0) (λ x13 x14 x15 . 0) 0 0 (λ x13 . 0) 0)) (λ x12 : ((ι → ι) → ι) → ι . 0))) 0 (x0 (λ x9 : ι → ι . λ x10 . x1 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . λ x12 : ι → ι . λ x13 . 0) (x0 (λ x11 : ι → ι . λ x12 . Inj0 0) (λ x11 x12 x13 . 0) 0 0 (λ x11 . x2 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι . λ x13 : ι → (ι → ι) → ι . 0) (λ x12 . 0)) (Inj0 0))) (λ x9 x10 x11 . Inj0 (Inj0 (x7 (λ x12 : (ι → ι) → ι → ι . 0)))) (Inj0 (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . 0) (x5 0))) (x6 (λ x9 . Inj0 (setsum 0 0)) (λ x9 : ι → ι . x3 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . setsum 0 0) (λ x10 : ((ι → ι) → ι) → ι . x6 (λ x11 . 0) (λ x11 : ι → ι . 0) 0 0)) (Inj1 (setsum 0 0)) (x7 (λ x9 : (ι → ι) → ι → ι . setsum 0 0))) (λ x9 . x5 (x7 (λ x10 : (ι → ι) → ι → ι . 0))) 0) (λ x9 . x3 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x6 (λ x11 . x2 (λ x12 : (((ι → ι) → ι → ι) → ι) → ι . λ x13 : ι → (ι → ι) → ι . setsum 0 0) (λ x12 . 0)) (λ x11 : ι → ι . Inj1 0) (Inj0 0) (x0 (λ x11 : ι → ι . λ x12 . setsum 0 0) (λ x11 x12 x13 . x0 (λ x14 : ι → ι . λ x15 . 0) (λ x14 x15 x16 . 0) 0 0 (λ x14 . 0) 0) (x10 0 (λ x11 : ι → ι . λ x12 . 0)) (x0 (λ x11 : ι → ι . λ x12 . 0) (λ x11 x12 x13 . 0) 0 0 (λ x11 . 0) 0) (λ x11 . setsum 0 0) (x10 0 (λ x11 : ι → ι . λ x12 . 0)))) (λ x10 : ((ι → ι) → ι) → ι . x10 (λ x11 : ι → ι . Inj0 (x0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 x13 x14 . 0) 0 0 (λ x12 . 0) 0)))) (x2 (λ x9 : (((ι → ι) → ι → ι) → ι) → ι . λ x10 : ι → (ι → ι) → ι . x1 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . λ x12 : ι → ι . λ x13 . Inj0 0) (x10 0 (λ x11 . setsum 0 0))) (λ x9 . x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0) (x2 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι . λ x11 : ι → (ι → ι) → ι . 0) (λ x10 . setsum 0 0)))) = x0 (λ x9 : ι → ι . λ x10 . setsum (x2 (λ x11 : (((ι → ι) → ι → ι) → ι) → ι . λ x12 : ι → (ι → ι) → ι . x12 (x1 (λ x13 : ι → ((ι → ι) → ι → ι) → ι . λ x14 : ι → ι . λ x15 . 0) 0) (λ x13 . Inj0 0)) (λ x11 . x0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 x13 x14 . x14) 0 x10 (λ x12 . Inj0 0) (x1 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . λ x13 : ι → ι . λ x14 . 0) 0))) 0) (λ x9 x10 x11 . x3 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . x10) (λ x12 : ((ι → ι) → ι) → ι . x12 (λ x13 : ι → ι . Inj1 (Inj1 0)))) (Inj0 (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . 0) 0)) (Inj1 x4) (setsum 0) (x6 (λ x9 . 0) (λ x9 : ι → ι . Inj1 (x5 0)) (Inj0 (setsum 0 (setsum 0 0))) (x7 (λ x9 : (ι → ι) → ι → ι . x5 (setsum 0 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 : (((ι → ι) → ι) → (ι → ι) → ι) → ι → ι → ι → ι . x0 (λ x9 : ι → ι . x9) (λ x9 x10 x11 . Inj1 x10) (setsum (x7 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x10 (Inj1 0)) (x0 (λ x9 : ι → ι . λ x10 . Inj0 0) (λ x9 x10 x11 . x1 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . λ x13 : ι → ι . λ x14 . 0) 0) (x0 (λ x9 : ι → ι . λ x10 . 0) (λ x9 x10 x11 . 0) 0 0 (λ x9 . 0) 0) 0 (λ x9 . x7 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . 0) 0 0 0) (x0 (λ x9 : ι → ι . λ x10 . 0) (λ x9 x10 x11 . 0) 0 0 (λ x9 . 0) 0)) (x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x6 0 0 0 0) (λ x9 : ((ι → ι) → ι) → ι . 0)) (x6 0 (Inj1 0) 0 (setsum 0 0))) (x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x9 : ((ι → ι) → ι) → ι . x7 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . x10 (λ x12 . 0)) (x2 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι . λ x11 : ι → (ι → ι) → ι . 0) (λ x10 . 0)) 0 (x3 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x10 : ((ι → ι) → ι) → ι . 0))))) (Inj1 (Inj0 (x7 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . Inj0 0) (Inj1 0) (x5 0) (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . 0) 0)))) (λ x9 . setsum (x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0) (setsum (x0 (λ x10 : ι → ι . λ x11 . 0) (λ x10 x11 x12 . 0) 0 0 (λ x10 . 0) 0) x9)) (setsum (x0 (λ x10 : ι → ι . λ x11 . Inj1 0) (λ x10 x11 x12 . x9) (x2 (λ x10 : (((ι → ι) → ι → ι) → ι) → ι . λ x11 : ι → (ι → ι) → ι . 0) (λ x10 . 0)) (x6 0 0 0 0) (λ x10 . x3 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x11 : ((ι → ι) → ι) → ι . 0)) (x3 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x10 : ((ι → ι) → ι) → ι . 0))) 0)) 0 = setsum (x7 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) (setsum x4 (x7 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x1 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . λ x12 : ι → ι . λ x13 . 0) 0) (x0 (λ x9 : ι → ι . λ x10 . 0) (λ x9 x10 x11 . 0) 0 0 (λ x9 . 0) 0) (Inj1 0) (setsum 0 0))) (Inj0 (setsum (setsum 0 0) x4)) (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . x10 0) (x3 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . setsum 0 0) (λ x9 : ((ι → ι) → ι) → ι . Inj1 0)))) (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . λ x10 : ι → ι . λ x11 . setsum (x1 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . λ x13 : ι → ι . λ x14 . x11) 0) (x1 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . λ x13 : ι → ι . λ x14 . x14) (Inj1 0))) 0)) ⟶ False (proof) |
|